Design, Synthesis, and In Silico Study of Two N-Substituted Pyrazinamide Analogs as Potential Antituberculosis Agents

Authors

  • Muhammad Zulqurnain Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Bakti Indonesia, Jalan Kampus Bumi Cempokosari No.40, Cluring District, Banyuwangi Regency, East Java 68482, Indonesia
  • First Ambar Wati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Ketintang, Gayungan District, Surabaya, East Java 60231, Indonesia
  • Ana Nurjanah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Bakti Indonesia, Jalan Kampus Bumi Cempokosari No.40, Cluring District, Banyuwangi Regency, East Java 68482, Indonesia
  • Layli Adha Nadira Kavin Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Ketintang, Gayungan District, Surabaya, East Java 60231, Indonesia
  • Rizqi Nur Afifah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Ketintang, Gayungan District, Surabaya, East Java 60231, Indonesia
  • Suyatno Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Ketintang, Gayungan District, Surabaya, East Java 60231, Indonesia
  • Mardi Santoso Department of Chemistry, Faculty of Analytical Data Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, East Java 60111, Indonesia

DOI:

https://doi.org/10.21776/

Keywords:

pyrazinamide, yamaguchi-reaction, antituberculosis, molecular-docking, ADME-study

Abstract

Tuberculosis (TB) is an infectious yet often overlooked disease that remains a significant global challenge. Pyrazinamide (PZA), a key drug in the first-line TB treatment regimen, is used to reduce the duration of therapy, making it a compound of great interest for further exploration. Two pyrazine-2-carboxamide analogs have been successfully synthesized and reported, followed by an in-silico evaluation of their potency as antituberculosis agents. Yamaguchi reagent was employed as a coupling agent between pyrazine-2-carboxylic acid and corresponding amine, yielding N-(cyclohexylmethyl) pyrazine-2-carboxamide (D) and N-(4-cyclooctyl) pyrazine-2-carboxamide (E) in 60% and 55%, respectively. The molecular docking analysis of compounds (D) and (E) demonstrated lower binding energies (-7.65 and -7.37 kcal/mol, respectively), in comparison with the standard TB drugs, pyrazinamide and isoniazid. Additionally, ADME and pharmacokinetics evaluations revealed that compounds (D) and (E) meet the essential criteria for oral drug candidacy. These findings suggest that the pyrazinamide analogs (D) and (E) hold significant potential as promising antimycobacterial agents for tuberculosis therapy.

Downloads

Download data is not yet available.

References

[1] Niculescu, A. G., Mük, G. R., Avram, S., Vlad, I. M., Limban, C., Nuta, D., Grumezescu, A. M., and Chifiriuc, M. C., Eur. J. Med. Chem., 2024, 269, 116268.

[2] WHO, Global Tuberculosis Report 2023, https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/ Accessed 25 March 2024.

[3] Abdel-Aziz, M., and Abdel-Rahman, H. M. A., Eur. J. Med. Chem., 2010, 45 (8), 3384–3388.

[4] Wu, S.; Lan, L., Jiang, J., Ding, X., Ho, C. M., Lou, Y., Fan, G., J. Pharm. Biomed. Anal., 2019, 168, 44–54.

[5] Doležal, M.; Zitko, J., Kešetovičová, D., Kuneš, J., and Svobodová, M., Molecules, 2009, 14 (10), 4180–4189.

[6] Semelkova, L., Konecna, K., Paterova, P., Kubicek, V., Kunes, J., Novakova, L., Marek, J., Naesens, L., Pesko, M., Kralova, K., Dolezal, M., and Zitko, J., Molecules 2015, 20 (5), 8687–8711.

[7] Bouz, G., Semelková, L., Jand’ourek, O., Konečná, K., Paterová, P., Navrátilová, L., Kubíček, V., Kuneš, J., Doležal, M., and Zitko, J., Molecules, 2019, 24 (7). 1212.

[8] Hosseini, S., Monajjemi, M., Rajaeian, E., and Haghgu, M., Iran J. Pharm. Res., 2013, 12 (4), 745–750.

[9] Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H., and Sun, Z., J. Antimicrob. Chemother. 2003, 52 (5), 790–795.

[10] Zhou, S., Yang, S., and Huang, G., J. Enzyme Inhib. Med. Chem., 2017, 32 (1), 1183–1186.

[11] Zitko, J., Jampilek, J., Dobrovolný, L., Svobodova, M., Kuneš, J., and Doležal, M., Bioorganic Med. Chem. Lett., 2012, 22 (4), 1598–1601.

[12] Krause, M., Foks, H., Augustynowicz-Kopeć, E., Napiórkowska, A., Szczesio, M., and Gobis, K., Molecules 2018, 23 (4), 1–15.

[13] Gobis, K., Foks, H., Serocki, M., Augustynowicz-Kopeć, E., Napiórkowska, A., Eur. J. Med. Chem., 2015, 89, 13–20.

[14] Zulqurnain, M., Aijijiyah, N. P., Wati, F. A., Fadlan, A., Azminah, A., and Santoso, M., J. Appl. Pharm. Sci., 2023, 13 (11), 170–177.

[15] Onajole, O. K., Pieroni, M., Tipparaju, S. K., Lun, S., Stec, J., Chen, G., Gunosewoyo, H., Guo, H., Ammerman, N. C., Bishai, W. R., and Kozikowski, A. P., J. Med. Chem., 2013, 56 (10), 4093–4103.

[16] Zitko, J., Servusová, B., Paterová, P., Mandíková, J., Kubíček, V., Kučera, R., Hrabcová, V., Kuneš, J., Soukup, O., and Doležal, M., Molecules, 2013, 18 (12), 14807–14825.

[17] Zulqurnain, M., Ghulam Fahmi, M. R., Fadlan, A., Santoso, M., IOP Conf. Ser. Mater. Sci. Eng., 2020, 833 (1), 6.

[18] Daina, A., Michielin, O., and Zoete, V. Sci. Rep. 2017, 7, 1–13.

[19] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J., J. Comput. Chem., 2009, 30 (16), 2785–2791.

[20] Inanaga, J., Hirata, K., Saeki, H., Katsuki, T., and Yamaguchi, M., Bulletin of the Chemical Society of Japan, 1979, 52 (7), 1989–1993.

[21] Kawanami, Y., Dainobu, Y., Inanaga, J., Katsuki, T., and Yamaguchi, Bull. Chem. Soc. Jpn., 1981, 54 (3), 943–944.

[22] Angelova, V. T., Pencheva, T., Vassilev, N., K-Yovkova, E., Mihaylova, R., Petrov, B., and Valcheva, V., Antibiotics, 2022, 11 (5), 1–22.

[23] Silva, A. M., Martins-Gomes, C., Ferreira, S. S., Souto, E. B., and Andreani, T., Int. J. Mol. Sci., 2022, 23 (15).

[24] Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., and Wang, Y., Signal Transduct. Target. Ther., 2023, 8 (1).

[25] Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., Huai, C., Shen, L., Zhang, N., He, L., and Qin, S. Int. J. Mol. Sci., 2021, 22 (23), 1–16.

[26] Hallikeri, C. S., Patil, R., Kumar, S. R. P., Kulkarni, V. H., and Joshi, S. D., Indian J. Heterocycl., Chem., 2020, 30 (2), 223–232.

[27] Kumbar, S. S., Shettar, A., Joshi, S. D., and Patil, S. A., J. Mol. Struct., 2021, 1231, 130016.

[28] Infield, D. T., Rasouli, A., Galles, G. D., Chipot, C., Tajkhorshid, E., and Ahern, C. A. J. Mol. Biol., 2021, 433 (17), 167035.

Downloads

Published

2025-04-08

How to Cite

Design, Synthesis, and In Silico Study of Two N-Substituted Pyrazinamide Analogs as Potential Antituberculosis Agents. (2025). The Journal of Pure and Applied Chemistry Research, 14(1), 23-33. https://doi.org/10.21776/