The Effect of Surfactant on the Characteristics of Curcumin-Loaded Nanostructured Lipid Carriers: Fluorescence and Stability Study

Authors

  • Mega Nurul Madania Universitas Brawijaya
  • Zubaidah Ningsih Universitas Brawijaya
  • Anastasia Fitria Devi Badan Riset dan Inovasi Nasional
  • Diah Mardiana Universitas Brawijaya
  • Ulfa Andayani Universitas Brawijaya

DOI:

https://doi.org/10.21776/

Keywords:

Curcumin, Nanostructured Lipid Carrier, Tween 80, CTAB

Abstract

Curcumin, a bioactive compound derived from Curcuma longa, offers significant pharmacological benefits such as antioxidant, anti-inflammatory, and anticancer properties. However, its therapeutic application is restricted due to poor water solubility, low systemic bioavailability, and limited skin penetration. This study explores the use of Nanostructured Lipid Carriers (NLCs) as a drug delivery system to improve curcumin's stability and permeability. Two formulations were developed: NLC-KUR-T80, which encapsulates curcumin using the non-ionic surfactant Tween 80, and NLC-KUR-CTAB, which uses the cationic surfactant CTAB. Both formulations were prepared using the Phase Inversion Temperature (PIT) method and characterized for particle size, polydispersity index (PI), zeta potential, encapsulation efficiency (EE%), and fluorescence properties. Results revealed that CUR-NLC-CTAB exhibited a larger particle size (1410 ± 183 nm), higher zeta potential (78.70 ± 0.67 mV), and significantly better encapsulation efficiency (27.33 ± 3.33%) compared to CUR-NLC-T80. Fluorescence studies demonstrated that curcumin within NLC-CTAB had enhanced fluorescence intensity, indicating better stability and distribution within the lipid matrix.

Downloads

Download data is not yet available.

References

[1] Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., Xu, R. Drug Des. Devel. Ther., 2021, 15, 4503–4525.

[2] Jakubczyk, K., Drużga, A., Katarzyna, J., Skonieczna-Żydecka, K. Antioxidants, 2020, 9 (11), 1092.

[3] Baldi, A., De Luca, A., Maiorano, P., D’Angelo, C., Giordano, A. Int. J. Mol. Sci., 2020, 21 (5), 1839.

[4] Quispe, C., Herrera-Bravo, J., Javed, Z., Khan, K., Raza, S., Gulsunoglu-Konuskan, Z., Daştan, S. D., Sytar, O., Martorell, M., Sharifi-Rad, J., Calina, D. BioMed Res. Int., 2022, 2022 (1), 1375892.

[5] Teow, S.-Y., Liew, K., Ali, S. A., Khoo, A. S.-B., Peh, S.-C. J. Trop. Med., 2016, 2016, e2853045.

[6] Boscariol, R., Caetano, É. A., Grotto, D., Rosa-Castro, R. M., Oliveira Junior, J. M., Vila, M. M. D. C., Balcão, V. M. Pharmaceutics, 2022, 14 (4), 779.

[7] Rapalli, V. K., Kaul, V., Waghule, T., Gorantla, S., Sharma, S., Roy, A., Dubey, S. K., Singhvi, G. Eur. J. Pharm. Sci., 2020, 152, 105438.

[8] Bahrami, A., Montecucco, F., Carbone, F., Sahebkar, A. BioMed Res. Int., 2021, 2021 (1), 8972074.

[9] Jannah, M., Lestari, M. L. A. D., Yanti, E. I., Ningsih, Z. AIP Conf. Proc., 2021, 2360 (1), 050005.

[10] Suresh, K., Nangia, A. CrystEngComm, 2018, 20 (24), 3277–3296.

[11] Kriplani, P., Guarve, K., Singh Baghel, U. Chin. Herb. Med., 2021, 13 (2), 274–285.

[12] Ferreira, K. C. B., Valle, A. B. C. dos S., Paes, C. Q., Tavares, G. D., Pittella, F. Pharmaceutics, 2021, 13 (9), 1454.

[13] Won, J.-H., Jin, M., Na, Y.-G., Song, B., Yun, T.-S., Hwang, Y.-R., Lee, S.-R., Je, S., Kim, J.-Y., Lee, H.-K., Cho, C.-W. J. Drug Deliv. Sci. Technol., 2023, 89, 105108.

[14] Zhang, J., Chuesiang, P., Kim, J. T., Shin, G. H. Food Chem., 2022, 392, 133306.

[15] Han, F., Li, S., Yin, R., Liu, H., Xu, L. Colloids Surf. Physicochem. Eng. Asp., 2008, 315 (1), 210–216.

[16] Elmowafy, M., Shalaby, K., Ali, H. M., Alruwaili, N. K., Salama, A., Ibrahim, M. F., Akl, M. A., Ahmed, T. A. Int. J. Pharm., 2019, 572, 118781.

[17] Tran, T., Gonzalez Perdomo, M. E., Haghighi, M., Amrouch, K. Geoenergy Sci. Eng., 2023, 228, 212041.

[18] Zhao, S., Yang, X., Garamus, V. M., Handge, U. A., Bérengère, L., Zhao, L., Salamon, G., Willumeit, R., Zou, A., Fan, S. Langmuir, 2014, 30 (23), 6920–6928.

[19] Putri, E. F. A., Indahyanti, E., Mardiana, D., Lestari, M. L. A. D., Ningsih, Z. Sci. Technol. Indones., 2023, 8 (3), 509–515.

[20] de França, B. M., Oliveira, S. S. C., Souza, L. O. P., Mello, T. P., Santos, A. L. S., Bello Forero, J. S. Dyes Pigments, 2022, 198, 110011.

[21] Priyadarsini, K. I. J. Photochem. Photobiol. C Photochem. Rev., 2009, 10 (2), 81–95.

[22] Patra, D., Barakat, C. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2011, 79 (5), 1034–1041.

[23] Mondal, S., Ghosh, S. J. Photochem. Photobiol. B, 2012, 115, 9–15.

[24] Kunwar, A., Barik, A., Pandey, R., Priyadarsini, K. I. Biochim. Biophys. Acta BBA - Gen. Subj., 2006, 1760 (10), 1513–1520.

[25] Kunwar, A., Barik, A., Mishra, B., Rathinasamy, K., Pandey, R., Priyadarsini, K. I. Biochim. Biophys. Acta BBA - Gen. Subj., 2008, 1780 (4), 673–679.

[26] Calligaris, S., Valoppi, F., Barba, L., Pizzale, L., Anese, M., Conte, L., Nicoli, M. C. Food Biophys., 2017, 12 (1), 45–51.

[27] Khosa, A., Reddi, S., Saha, R. N. Biomed. Pharmacother., 2018, 103, 598–613.

[28] Fatfat, Z., Karam, M., Maatouk, B., Fahs, D., Gali-Muhtasib, H. In Advanced and Modern Approaches for Drug Delivery, Nayak, A. K., Hasnain, M. S., Laha, B., Maiti, S., Eds., Academic Press,, 2023, 159–197.

[29] Samimi, S., Maghsoudnia, N., Eftekhari, R. B., Darkoosh, F. Lipid-Based Nanoparticles for Drug Delivery Systems, in book Mohapatra, S. S., Ranjan, S., Dasgupta, N., Mishra, R. K., Thomas, S., Characterization and Biology of Nanomaterials for Drug Delivery, 2019, Elsevier.

[30] Smith, M. C., Crist, R. M., Clogston, J. D., McNeil, S. E. Anal. Bioanal. Chem., 2017, 409 (24), 5779–5787.

[31] Kharat, M., Zhang, G., McClements, D. J. Food Res. Int., 2018, 111, 178–186.

[32] Rostinawati, T., Sriwododo, Susilawati, Y., Yohana Ch, A. J. Kartika Kim., 2022, 5 (1), 79–89.

[33] Ong, S. G. M., Ming, L. C., Lee, K. S., Yuen, K. H. Pharmaceutics, 2016, 8 (3), 25.

[34] Putro, J. N., Ismadji, S., Gunarto, C., Soetaredjo, F. E., Ju, Y. H. J. Mol. Liq., 2020, 298, 112034.

[35] Rosen, M. J. Surfactants and Interfacial Phenomena, 1978, John Wiley & Sons, United States.

[36] Wu, L., Zhang, J., Watanabe, W. Adv. Drug Deliv. Rev., 2011, 63 (6), 456–469.

[37] Maity, B., Chatterjee, A., Ahmed, S. A., Seth, D. J. Phys. Chem. B, 2015, 119 (9), 3776–3785.

[38] Akbari, E., Akhavan, O., Hatamie, S., Rahighi, R. J. Drug Deliv. Sci. Technol., 2018, 45, 422–427.

[39] Hakim, L., Mardiana, D., Rokhiyah, U., Lestari, M. L. A. D., Ningsih, Z. Sci. Technol. Indones., 2021, 6 (3), 113–120.

[40] Patra, D., Barakat, C. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2011, 79 (5), 1034–1041.

[41] Wang, X., Gao, Y. Food Chem., 2018, 246, 242–248.

[42] Urošević, M., Nikolić, L., Gajić, I., Nikolić, V., Dinić, A., Miljković, V. Antibiotics, 2022, 11 (2), 135.

[43] Santiago, R. R., Gyselle de Holanda e Silva, K., Dantas dos Santos, N., Genre, J., Freitas de Oliveira Lione, V., Silva, A. L., Marcelino, H. R., Gondim, A. D., Tabosa do Egito, E. S. J. Drug Deliv. Sci. Technol., 2018, 48, 372–382.

[44] Rana, A. A., Yusaf, A., Shahid, S., Usman, M., Ahmad, M., Aslam, S., Al-Hussain, S. A., Zaki, M. E. A. Pharm. Basel Switz., 2023, 16 (12), 1663.

[45] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2006, Springer, New York.

Downloads

Published

2025-04-30

How to Cite

The Effect of Surfactant on the Characteristics of Curcumin-Loaded Nanostructured Lipid Carriers: Fluorescence and Stability Study. (2025). The Journal of Pure and Applied Chemistry Research, 14(1), 1-12. https://doi.org/10.21776/