Hydrogenation of Alpha-pinene over Nickel Nanoparticles under Mild Condition Pressure
DOI:
https://doi.org/10.21776/ub.jpacr.2024.013.03.7916Keywords:
hydrogenation, turpuntine, a-pinene, nickel-nanoparticles, catalysisAbstract
Alpha-pinene is the main compound in turpentine oil and is widely used as a fragrance, fine chemistry, flavour, and antibacterial. Due to the presence of unsaturated double bonds in its structure, this compound’s chemical properties are relatively active. Hydrogenation is a common method for saturating compounds and nickel has shown good activity in this process as catalysts. However, it often shows reaction conditions such as high pressure. The research method added nickel chloride to a suspension mixture of NaBH4 in isopropyl alcohol until a black colloidal solution and a-pinene reagents were added. Hydrogen gas was added in different conditions, with a pressure of 2-4 atm at the temperature of 50-60 oC 24h. The result showed a nickel formed at a nanoparticle size of 34-81 nm. Furthermore, FT-IR results show a difference in intensity at wavelengths of 1600 and 3000 cm-1, indicating the formation of hydrogenation products. The GC-MS shows a new peak at a retentivity of 5.503, which characteristics show that it is identified as a pinane compound with the highest percentage of 63% at a reaction condition of 4 atm.Â
Downloads
References
[1] Bouzenna, H., Hfaiedh, N., Giroux-Metges, M. A., Elfeki, A., Talarmin, H., Biomed. Pharmacother., 2017, 93, 961–968.
[2] Ariono, D., Aldiyana, G., Adrian, R., Indarto,. IOP Conf. Ser. Mater. Sci. Eng, 2020, 742 (1), 1–7.
[3] Amini, R. W., Masruri, M., Rahman, M. F., Jurnal Ilmu Kimia Universitas Brawijaya, 2014, 1 (1), 147–153.
[4] Fadana, Y., Dinana, I. A., Srihardyastutie, A., Rollando, R., Masruri, M., Trop. J. Nat. Prod. Res, 2023, 7 (3), 2586–2595.
[5] Hu, S., Wang, L., Chen, X., Wei, X., Tong, Z., Yin, L., RSC Adv., 2019, 9 (11), 5978–5986.
[6] Allenspach, M., Steuer, C., Phytochem., 2021, 190, 112857.
[7] Donoso, D., Ballesteros, R., Bolonio, D., García-Martínez, M. J., Lapuerta, M., Canoira, L., Energy and Fuels, 2021, 35 (2), 1465–1475.
[8] Liu, P., Liu, X., Saburi, T., Kubota, S., Huang, P., Wada, Y., RSC Adv., 2021, 11 (33), 20529–20540.
[9] Cheng, H.; Liang, M.; Dai, S.; Lu, X.; Huang, Q.; Lai, F.; Ma, L.; Li, W.; Liu, X., Arab. J. Chem., 2023, 16, 105322.
[10] Yara-Varón, E., Selka, A., Fabiano-Tixier, A. S., Balcells, M., Canela-Garayoa, R., Bily, A., Touaibia, M., Chemat, F., Green Chem., 2016, 18 (24), 6596–6608.
[11] Eze, V. C., Rehman, A., Patel, M., Ahmad, S., Harvey, A. P., RSC Adv., 2022, 12 (27), 17454–17465.
[12] Cocker, W., Shannon, P. V. R., Staniland, P. A., Chem. Comm., 1965, 12, 254-255.
[13] Hartati, H., Firda, P. B. D., Bahruji, H., Bakar, M. B., Flavour Fragr. J, 2021, 36 (5), 509–525.
[14] Yang, Y., Liu, X., Yin, D., Zhang, Z., Lei, D., Yang, J., J. Ind. Eng. Chem, 2015, 26, 333–334.
[15] Hou, S.-L., Dong, J., Zhu, Z.-H., Geng, L.-C., Ma, Y., Zhao, B., Chem. Mater, 2020, 32, 7063–7069.
[16] Hu, Y., Chen, W., Ba, M. W., Xie, X., Song, W. G., Russ. J. Phys. Chem., 2019, 1754–1761.
[17] Bao, M.-H., Yu, F.-L., Yuan, B., Xie, C.-X., Yu, S.-T., BioResources, 2023, 18 (2), 4032–4054.
[18] Chandra, S., Kumar, A., Tomar, P. K., J. Saudi Chem. Soc. 2014, 18 (5), 437–442.
[19] Shehensha, S., Vijaya Jyothi, M., Pharmacogn. J, 2020, 12 (5), 1086–1092.
[20] Khanna, P. K., More, P. V., Jawalkar, J. P., Bharate, B. G., Mater. Lett, 2009, 63 (16), 1384–1386.
[21] Yadav, J., Jasrotia, P., Kashyap, P. L., Bhardwaj, A. K., Kumar, S., Singh, M., Singh, G. P., Plant Prot. Sci, 2022, 58 (1), 1–17.
[22] Kawsar, M., Hossain, M. S., Bahadur, N. M., Ahmed, S., Heliyon, 2024, 10 (3), e25347.
[23] Hassanzadeh-Tabrizi, S. A., J. Alloys Compd. 2023, 968, 171914.
[24] Durango-Giraldo, G., Zapata-Hernandez, C., Santa, J. F., Buitrago-Sierra, R., J. Ind. Eng. Chem, 2022, 107, 31–44.
[25] Wijayati, N., Supartono, Kusumastuti, E., IOP Conf. Ser. Earth Environ. Sci, 2018, 171 (1).
[26] Supramono, D., Yoandi, I., Fauzi, M. R., Processes, 2022, 10 (8), 1662.
[27] Mokhov, V. M., Popov, Y. V., Nebykov, D. N., Russ. J. Org. Chem, 2016, 52 (3), 319–323.
[28] Wang, X., Yu, F., Xie, C., Yu, S., Mol. Catal, 2018, 444, 62–69.
[29] Prihadiyono, F. I., Lestari, W. W., Putra, R., Aqna, A. N. L., Cahyani, I. S., Kadja, G. T. M., Int. J. Technol, 2022, 13 (4), 931–943.
[30] Pradipta, M., MASRURI, M., Rahman, M. F., Proceeding of International Conference on Science and Science Education (ICONSSE), Satya Wacana Christian University, 2017.
[31] Nasrollahzadeh, M., Shafiei, N., Maham, M., Issaabadi, Z., Nezafat, Z., Varma, R. S., Mol. Catal, 2020, 49, 111129.
[32] Park, S. J.; Seo, M. K., Solid-Solid Interfaces in Interface Science and Technology, 2011, 18, Elsevier, 253-331.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmad Rizqi Alima Fabri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).