Hydrogenation of Alpha-pinene over Nickel Nanoparticles under Mild Condition Pressure

Authors

  • Ahmad Rizqi Alima Fabri Postgraduate program in chemistry, Brawijaya University
  • Warsito WARSITO Chemistry department, Brawijaya University
  • Siti Mariyah Ulfa Chemistry department, Brawijaya University
  • Masruri MASRURI Chemistry department, Brawijaya University

DOI:

https://doi.org/10.21776/ub.jpacr.2024.013.03.7916

Keywords:

hydrogenation, turpuntine, a-pinene, nickel-nanoparticles, catalysis

Abstract

Alpha-pinene is the main compound in turpentine oil and is widely used as a fragrance, fine chemistry, flavour, and antibacterial. Due to the presence of unsaturated double bonds in its structure, this compound’s chemical properties are relatively active. Hydrogenation is a common method for saturating compounds and nickel has shown good activity in this process as catalysts. However, it often shows reaction conditions such as high pressure. The research method added nickel chloride to a suspension mixture of NaBH4 in isopropyl alcohol until a black colloidal solution and a-pinene reagents were added. Hydrogen gas was added in different conditions, with a pressure of 2-4 atm at the temperature of 50-60 oC 24h. The result showed a nickel formed at a nanoparticle size of 34-81 nm. Furthermore, FT-IR results show a difference in intensity at wavelengths of 1600 and 3000 cm-1, indicating the formation of hydrogenation products. The GC-MS shows a new peak at a retentivity of 5.503, which characteristics show that it is identified as a pinane compound with the highest percentage of 63% at a reaction condition of 4 atm. 

Downloads

Download data is not yet available.

References

[1] Bouzenna, H., Hfaiedh, N., Giroux-Metges, M. A., Elfeki, A., Talarmin, H., Biomed. Pharmacother., 2017, 93, 961–968.

[2] Ariono, D., Aldiyana, G., Adrian, R., Indarto,. IOP Conf. Ser. Mater. Sci. Eng, 2020, 742 (1), 1–7.

[3] Amini, R. W., Masruri, M., Rahman, M. F., Jurnal Ilmu Kimia Universitas Brawijaya, 2014, 1 (1), 147–153.

[4] Fadana, Y., Dinana, I. A., Srihardyastutie, A., Rollando, R., Masruri, M., Trop. J. Nat. Prod. Res, 2023, 7 (3), 2586–2595.

[5] Hu, S., Wang, L., Chen, X., Wei, X., Tong, Z., Yin, L., RSC Adv., 2019, 9 (11), 5978–5986.

[6] Allenspach, M., Steuer, C., Phytochem., 2021, 190, 112857.

[7] Donoso, D., Ballesteros, R., Bolonio, D., García-Martínez, M. J., Lapuerta, M., Canoira, L., Energy and Fuels, 2021, 35 (2), 1465–1475.

[8] Liu, P., Liu, X., Saburi, T., Kubota, S., Huang, P., Wada, Y., RSC Adv., 2021, 11 (33), 20529–20540.

[9] Cheng, H.; Liang, M.; Dai, S.; Lu, X.; Huang, Q.; Lai, F.; Ma, L.; Li, W.; Liu, X., Arab. J. Chem., 2023, 16, 105322.

[10] Yara-Varón, E., Selka, A., Fabiano-Tixier, A. S., Balcells, M., Canela-Garayoa, R., Bily, A., Touaibia, M., Chemat, F., Green Chem., 2016, 18 (24), 6596–6608.

[11] Eze, V. C., Rehman, A., Patel, M., Ahmad, S., Harvey, A. P., RSC Adv., 2022, 12 (27), 17454–17465.

[12] Cocker, W., Shannon, P. V. R., Staniland, P. A., Chem. Comm., 1965, 12, 254-255.

[13] Hartati, H., Firda, P. B. D., Bahruji, H., Bakar, M. B., Flavour Fragr. J, 2021, 36 (5), 509–525.

[14] Yang, Y., Liu, X., Yin, D., Zhang, Z., Lei, D., Yang, J., J. Ind. Eng. Chem, 2015, 26, 333–334.

[15] Hou, S.-L., Dong, J., Zhu, Z.-H., Geng, L.-C., Ma, Y., Zhao, B., Chem. Mater, 2020, 32, 7063–7069.

[16] Hu, Y., Chen, W., Ba, M. W., Xie, X., Song, W. G., Russ. J. Phys. Chem., 2019, 1754–1761.

[17] Bao, M.-H., Yu, F.-L., Yuan, B., Xie, C.-X., Yu, S.-T., BioResources, 2023, 18 (2), 4032–4054.

[18] Chandra, S., Kumar, A., Tomar, P. K., J. Saudi Chem. Soc. 2014, 18 (5), 437–442.

[19] Shehensha, S., Vijaya Jyothi, M., Pharmacogn. J, 2020, 12 (5), 1086–1092.

[20] Khanna, P. K., More, P. V., Jawalkar, J. P., Bharate, B. G., Mater. Lett, 2009, 63 (16), 1384–1386.

[21] Yadav, J., Jasrotia, P., Kashyap, P. L., Bhardwaj, A. K., Kumar, S., Singh, M., Singh, G. P., Plant Prot. Sci, 2022, 58 (1), 1–17.

[22] Kawsar, M., Hossain, M. S., Bahadur, N. M., Ahmed, S., Heliyon, 2024, 10 (3), e25347.

[23] Hassanzadeh-Tabrizi, S. A., J. Alloys Compd. 2023, 968, 171914.

[24] Durango-Giraldo, G., Zapata-Hernandez, C., Santa, J. F., Buitrago-Sierra, R., J. Ind. Eng. Chem, 2022, 107, 31–44.

[25] Wijayati, N., Supartono, Kusumastuti, E., IOP Conf. Ser. Earth Environ. Sci, 2018, 171 (1).

[26] Supramono, D., Yoandi, I., Fauzi, M. R., Processes, 2022, 10 (8), 1662.

[27] Mokhov, V. M., Popov, Y. V., Nebykov, D. N., Russ. J. Org. Chem, 2016, 52 (3), 319–323.

[28] Wang, X., Yu, F., Xie, C., Yu, S., Mol. Catal, 2018, 444, 62–69.

[29] Prihadiyono, F. I., Lestari, W. W., Putra, R., Aqna, A. N. L., Cahyani, I. S., Kadja, G. T. M., Int. J. Technol, 2022, 13 (4), 931–943.

[30] Pradipta, M., MASRURI, M., Rahman, M. F., Proceeding of International Conference on Science and Science Education (ICONSSE), Satya Wacana Christian University, 2017.

[31] Nasrollahzadeh, M., Shafiei, N., Maham, M., Issaabadi, Z., Nezafat, Z., Varma, R. S., Mol. Catal, 2020, 49, 111129.

[32] Park, S. J.; Seo, M. K., Solid-Solid Interfaces in Interface Science and Technology, 2011, 18, Elsevier, 253-331.

Downloads

Published

2024-12-28

How to Cite

Hydrogenation of Alpha-pinene over Nickel Nanoparticles under Mild Condition Pressure. (2024). The Journal of Pure and Applied Chemistry Research, 13(3), 166-174. https://doi.org/10.21776/ub.jpacr.2024.013.03.7916