Exploration of Total Flavonoid Content, Toxicity, and Antibacterial Activity of Acorus calamus L. Rhizome Isolates

Authors

  • Suci - Amalia Maulana Malik Ibrahim Islamic State University http://orcid.org/0000-0002-8656-8574
  • Faridatul Jannah Maulana Malik Ibrahim Islamic State University
  • Ida Irma Afriani Maulana Malik Ibrahim Islamic State University
  • Diana Candra Dewi Maulana Malik Ibrahim Islamic State University
  • A. Ghanaim Fasya Maulana Malik Ibrahim Islamic State University http://orcid.org/0000-0002-2273-4035

DOI:

https://doi.org/10.21776/

Keywords:

Toxicity, Antibacterial activity, Sonicated, Acorus calamus L., Flavonoids

Abstract

Acorus calamus L. is a medicinal plant with rhizomes commonly used in traditional medicine. This study aimed to determine the total flavonoid content, toxicity, and antibacterial activity of isolates from the rhizome of Acorus calamus L. The rhizome extract was sonicated using 70% ethanol, yielding 18.73% (w/w), and partitioned using ethyl acetate, yielding 10.80% (w/w). Subsequently, the ethyl acetate fraction was further separated using column chromatography. FTIR analysis of the ethanol extract, ethyl acetate fraction, and column isolates confirmed the presence of O–H functional groups and other vibrations, indicating the presence of flavonoid compounds. UV analysis revealed absorption at the band I (302, 302, 383 nm) and band II (253, 254, 258 nm). The total flavonoid content of the isolates, determined using AlCl3, was 32.95 mg QE/g. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of the column chromatography isolates identified the presence of isorhamnetin, quercetin, genistein, and glycitein. Furthermore, toxicity and antibacterial activity tests on the ethanol extract and ethyl acetate fraction showed LC50 values of 143.53 ppm and 41.16 ppm, respectively, and inhibition zone diameters ranging from 2.30-4.54 mm and 2.63-5.29 mm, respectively.

Downloads

Download data is not yet available.

Author Biography

  • Suci - Amalia, Maulana Malik Ibrahim Islamic State University
    Chemistry Study Program, Faculty of Science and Technology

References

[1] Elshikh, M. S., Rani, E., Al Farraj, D. A., Al-Hemaid, F. M. A., Gawwad, M. R. A., Malar, T. R. J. J., Dyona, L., and Vijayaraghavan, P., Physiol. Mol. Plant Pathol., 2022, 117, 101743.

[2] Wang, J., Fang, X., Ge, L., Cao, F., Zhao, L., Wang, Z., and Xiao, W., PloS One, 2018, 13 (5), e0197563.

[3] Caglayan, C., Demir, Y., Kucukler, S., Taslimi, P., Kandemir, F. M., and Gulçin, İ., Journal of Food Biochemistry, 2019, 43 (2) e12720.

[4] Aboody, M. S. and Mickymaray, S., Antibiotics, 2020, 9 (2), 45.

[5] Escribano-Ferrer, E., Queralt Regué, J., Garcia-Sala, X., Boix Montanés, A., and Lamuela-Raventos, R. M., J. of Nat. Prod, 2019, 82 (2), 177–182.

[6] Elmi, A., Spina, R., Risler, A., Philippot, S., Mérito, A., Duval, R. E., Abdoul-latif, F. M., and Laurain-Mattar, D., Molecules, 2020, 25 (2392), 1–15.

[7] Chandra, D. and Prasad, K., Journal of Medicine Plants Studies, 2017, 5 (5), 277 – 281.

[8] Sofyan, A., Widodo, E., and Natsir, H., J. Teknol. Pertan, 2017, 18 (3), 173–180.

[9] Parki, A., Chaubey, P., Prakash, O., Kumar, R., and Pant, A. K., Medicines, 2017, 4 (4), 81.

[10] Chakraborty, R., Sen, S., Ahmed, F. A., and Barakoti, H., Indo Global J. of Pharm. Sci., 2020, 10 (03), 35–40.

[11] Loying, R., Gogoi, R., Sarma, N., Borah, A., Munda, S., Pandey, S. K., and Lal, M., J. of Essent. Oil-Bearing Plants, 2019, 22 (5), 1299–1312.

[12] Das, B. K., Swamy, A. V., Koti, B. C., and Gadad, P. C., Heliyon, 2019, 5 (5), e01585.

[13] Khanal, H., Int. J. Appl. Sci. Biotechnol., 2019, 7 (3), 347–353.

[14] Kongkham, B., Duraivadivel, P., and Hariprasad, P., J. Of Ethnophamacology, 2024, 331, 118323.

[15] Radušienė, J., Judžentienė, A., Pečiulytė, D., and Janulis, V., Plant Genetic Resources: Characterization and Utilization, 2007, 5 (01), 37–44.

[16] Bahukhandi, A., Rawat, S., Bhatt, I. D., and Rawal, R. S. Natl. Acad. Sci. Lett., 2013, 36 (1), 93–99.

[17] Amalia, S., Hasibuan, L. S., Arianti, N. A., Fasya, A. G., Dewi, D. C., and Kadarani, D. K., IJFAC (Indonesian J. Fundam. Appl. Chem.), 2024, 9 (2), 66–73.

[18] Pacheco-Fernández, I. and Pino, V. Extraction with ionic liquids-organic compounds, Handbooks in Separation Science, 2020, Elsevier, United States p. 499 – 537.

[19] Zahari, N. A. A. R., Chong, G. H., Abdullah, L. C., and Chua, B. L., Processes, 2020, 8 (3).

[20] Tungmunnithum, D., Drouet, S., Kabra, A., and Hano, C., Antioxidants, 2020, 9 (7), 1–24.

[21] Quiroz, J. Q., Duran, A. M. N., Garcia, M. S., Gomez, G. L. C., and Camargo, J. J. R., Int. J. Food Sci., 2019, 2019, 5–7.

[22] Reddy, A. V. B., Moniruzzaman, M., Madhavi, V., and Jaafar, J., Stud. Nat. Prod. Chem., 2020, 66, 197–223.

[23] Mabry, T. J., Markham, K. R., and Thomas, M. B., The Systematic Identification of Flavonoids, 2012, Springer Science & Business Media, New York.

[24] Silva, S. D., Feliciano, R. P., Boas, L. V., and Bronze, M. R., Food Chem., 2014, 150, 489–493.

[25] Rajhard, S., Hladnik, L., Vicente, F. A., Srčič, S., Grilc, M., and Likozar, B., Processes 2021, 9 (11).

[26] Bahri, S., Raharjo, T. T., Ambarwati, Y., and Nurhasanah., J. of Physics: Conf. Series 2021, 1751 (1).

[27] Ricci, A., Olejar, K. J., Parpinello, G. P., Kilmartin, P. A., and Versari, A., Appl. Spectrosc. Rev., 2015, 50 (5), 407–442.

[28] Johnson, J. B., Thani, P. R., and Naiker, M., Talanta Open, 2022, 6, 100169.

[29] Arora, S. and Itankar, P., J. Tradit. Complement. Med., 2018, 8 (4), 476 – 482.

[30] Mustarichie, R. and Runadi, D., Asian J. Pharm. Res. Dev., 2021, 9 (6), 34 – 40.

[31] Ma, Y. L., Li, Q. M., Van den Heuvel, H., and Claeys, M., Rapid Commun. Mass Spectrom., 1997, 11 (12),.1357–1364.

[32] Ku, Y.-S., Ng, M.-S., Cheng, S.-S., Lo, A. W.-Y., Xiao, Z., Shin, T.-S., Chung, G., and Lam, H.-M., Nutrients, 2020, 12 (6), 1717.

[33] Kovalev, V. N., Popova, N. V., and Kislichenko, V. S., Workshop on Pharmacognosy workshop: textbook for university students or Практикум по фармакогнозии: учебное пособие для студ, 2003, Zolotye Stranitsy, Ukrania, ISBN 966–8032–77–2.

[34] Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., and McLaughlin, J. L., Planta Medica., 1982, 45 (1), 31–34.

[35] Rosyidah, K., Rizki, M. A., Astuti, M. D., and Rodiansono., BIO Web of Conferences., 2020, 20, 03004.

[36] Luzala, M. M., Muanga, C. K., Kyana, J., Safari, J. B., Zola, E. N., Mbusa, G. V., Nuapia, Y. B., Liesse, J. M. I., Nkanga, C. I., Krause, R. W. M., Balčiūnaitienė, A., and Memvanga, P. B., Nanomaterials, 2022, 12 (11), 1841.

[37] Davis, W. W., and Stout, T. R., Appl. Microbiol., 1971, 22 (4), 659–665.

[38] Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., and Cao, S., Scientific Reports, 2021, 11 (1), 10471.

Published

2025-04-21

How to Cite

Exploration of Total Flavonoid Content, Toxicity, and Antibacterial Activity of Acorus calamus L. Rhizome Isolates. (2025). The Journal of Pure and Applied Chemistry Research, 14(1), 73-85. https://doi.org/10.21776/