Antibacterial Activity of Legundi Leaf (Vitex trifolia) Essential Oil Using In-Vitro and In-Silico Methods
Retno Indriatie, Masruri Masruri, Warsito Warsito
J. Pure App. Chem. Res. Vol 12, No 1 (2023), pp. 26-37
Submitted: January 19, 2023     Accepted: April 26, 2023     Published: April 26, 2023

Abstract


Cover Image

Staphylococcus aureus causes many severe diseases, such as meningitis, lung infection, and hematogenous osteomyelitis. The prolonged use of antibiotic drugs leads to antimicrobial resistance (AMR), decreasing their effectiveness against S. aureus. Therefore, novel drugs isolated from natural products have been the focus of many researchers to solve that problem. The essential oils isolated from Vitex trifolia leaf have many pharmacological activities, including antibacterial and antifungal activities. In this research, essential oil was isolated by distillation, followed by GC-MS analysis. The antibacterial activity of the essential oil was conducted using a disk diffusion test (Kirby-Bauer) and by molecular docking study. The essential oil yield from distillation was 0.13%, containing major compounds such as sabinene, eucalyptol, terpinen-4-ol, α-terpineol, limonene, and caryophyllene. The essential oil gave intermediate inhibition against S. aureus with a 6.91 ± 0.03 mm inhibition zone in 20 mg/mL of the sample. Using molecular docking study, caryophyllene and α-terpineol were the key compounds for inhibiting the active site of tyrosyl-tRNA synthetase, sortase A, and dihydrofolate reductase that are responsible for the S. aureus growth and development.


Keywords : Vitex trifolia, essential oil, antibacterial, molecular docking, Staphylococcus aureus
Full Text: PDF


References


(1) Brown, M. M., Horswill, A. R. PLoS Pathog. 2020, 16 (11), e1009026.

(2) Archer, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., Shirtliff, M. E. Virulence 2011, 2 (5), 445–459.

(3) Parlet, C. P., Brown, M. M., Horswill, A. R. Trends Microbiol. 2019, 27 (6), 497–507.

(4) Han, Y., Chen, W., Sun, Z. J. Food Saf. 2021, 41 (5), e12918.

(5) Kwiecinski, J. M., Horswill, A. R. Curr. Opin. Microbiol. 2020, 53, 51–60.

(6) Putra, G. D. S., Khairullah, A. R., Effendi, M. H., Lazuardi, M., Kurniawan, S. C., Afnani, D. A., Silaen, O. S. M., Waruwu, Y. K. K., Millannia, S. K., Widodo, A. Biodiversitas J. Biol. Divers. 2023, 24 (1).

(7) Parikh, M. P., Octaria, R., Kainer, M. A. Emerg. Infect. Dis. 2020, 26 (3), 446.

(8) Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L. Biosaf. Health 2021, 3 (1), 32–38.

(9) Taylor, P. W. Int. J. Antimicrob. Agents 2013, 42 (3), 195–201.

(10) Dai, J., Han, R., Xu, Y., Li, N., Wang, J., Dan, W. Bioorganic Chem. 2020, 101, 103922.

(11) Ludivina Samson de Padua, Nuntavan Bunyapraphatsara, R.H.M.J. Lemmens. Plant resources of South-East Asia, Backhuys Publisher, Leiden, 1999.

(12) Hossain, M., Paul, N., Sohrab, M., Rahman, E., Rashid, M. Fitoterapia 2001, 72 (6), 695–697.

(13) Geetha, V., Doss, A., Doss, A. P. A. Anc. Sci. Life 2004, 23 (4), 30.

(14) El Kamari, F., Taroq, A., El Atki, Y., Aouam, I., Lyoussi, B., Abdellaoui, A. Asian J Pharm Clin Res 2018, 11, 365–368.

(15) Suksamrarn, A., Werawattanametin, K., Brophy, J. J. Flavour Fragr. J. 1991, 6 (1), 97–99.

(16) Yan, C.-X., Wei, Y.-W., Li, H., Xu, K., Zhai, R.-X., Meng, D.-C., Fu, X.-J., Ren, X. J. Ethnopharmacol. 2023, 116273.

(17) Park, Y.-S., Hwang, J.-T., Kim, Y.-S., Kim, J.-C., Lim, C.-H. Korean J. Pestic. Sci. 2012, 16 (4), 267–272.

(18) Devi, W. R. Adv. Pharm. Biotechnol. Recent Prog. Future Appl. 2020, 155–161.

(19) SINGH‐SANGWAN, N., Abad Farooqi, A., Singh Sangwan, R. New Phytol. 1994, 128 (1), 173–179.

(20) Devi, W. R., Singh, C. B. Int. J. Phytocosmetics Nat. Ingred. 2014, 1 (1), 5–5.

(21) Biemer, J. J. Ann. Clin. Lab. Sci. 1973, 3 (2), 135–140.

(22) Hudzicki, J. Am. Soc. Microbiol. 2009, 15, 55–63.

(23) Morris, G. M., Lim-Wilby, M. Mol. Model. Proteins 2008, 365–382.

(24) Austin, J., First, E. A. J. Biol. Chem. 2002, 277 (17), 14812–14820.

(25) Zhulenkovs, D., Rudevica, Z., Jaudzems, K., Turks, M., Leonchiks, A. Bioorg. Med. Chem. 2014, 22 (21), 5988–6003.

(26) Mazmanian, S. K., Liu, G., Ton-That, H., Schneewind, O. Science 1999, 285 (5428), 760–763.

(27) He, J., Qiao, W., An, Q., Yang, T., Luo, Y. Eur. J. Med. Chem. 2020, 195, 112268.

(28) Oefner, C., Bandera, M., Haldimann, A., Laue, H., Schulz, H., Mukhija, S., Parisi, S., Weiss, L., Lociuro, S., Dale, G. E. J. Antimicrob. Chemother. 2009, 63 (4), 687–698.

(29) Wei, X., Koo, I., Kim, S., Zhang, X. Analyst 2014, 139 (10), 2507–2514.

(30) Li, Y., Kong, D., Wu, H. Ind. Crops Prod. 2013, 41, 269–278.

(31) Schrödinger, LLC. The PyMOL Molecular Graphic System, 2015.

(32) Dallakyan, S., Olson, A. J. Chem. Biol. Methods Protoc. 2015, 243–250.

(33) Trott, O., Olson, A. J. J. Comput. Chem. 2010, 31 (2), 455–461.

(34) Masruri MASRURI, Moh Farid Rahman, Bagus Nurkam Ramadhan. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012060.

(35) Wijaya, N. D., Rohmah, L., Anggraini, E., Tyas, R. A. N., Wibowo, R. W. A., MASRURI, M. J. Pure Appl. Chem. Res. 2020, 9 (1), 66–72.

(36) Suksamrarn, A., Werawattanametin, K., Brophy, J. J. Flavour Fragr. J. 1991, 6 (1), 97–99.

(37) Singh-Sangwan, N., Farooqi, A. H. A., Sangwan, R. S. New Phytol. 1994, 128 (1), 173–179.

(38) Hassan, M., Maarof, N. D., Ali, Z. M., Noor, N. M., Othman, R., Mori, N. Biosci. Biotechnol. Biochem. 2012, 76 (8), 1463–1470.

(39) Hung, N. H., Quan, P. M., Satyal, P., Dai, D. N., Hoa, V. V., Huy, N. G., Giang, L. D., Ha, N. T., Huong, L. T., Hien, V. T., Setzer, W. N. Molecules 2022, 27 (20), 7092.

(40) Jayuska, A., Warsidah, W., Asikin, N., Widiyantoro, A., Aritonang, A. B. Berk. SAINSTEK 2022, 10 (1), 37–44.

(41) Devi, W. R., Singh, C. B. Int. J. Phytocosmetics Nat. Ingred. 2014, 1 (1), 5–5.

(42) el Kamari, F., Taroq, A., El Atki, Y., Aouam, I., Badiaa, L., Abdellaoui, A. Asian J. Pharm. Clin. Res. 2018, 11, 365.

(43) Zengin, H., Baysal, A. H. Molecules 2014, 19 (11), 17773–17798.

(44) Utegenova, G. A., Pallister, K. B., Kushnarenko, S. V., Özek, G., Özek, T., Abidkulova, K. T., Kirpotina, L. N., Schepetkin, I. A., Quinn, M. T., Voyich, J. M. Molecules 2018, 23 (7), 1679.

(45) Han, Y., Chen, W., Sun, Z. J. Food Saf. 2021, 41 (5), e12918.

(46) Dahham, S. S., Tabana, Y. M., Iqbal, M. A., Ahamed, M. B. K., Ezzat, M. O., Majid, A. S. A., Majid, A. M. S. A. Molecules 2015, 20 (7), 11808–11829.

(47) Qiu, X., Janson, C. A., Smith, W. W., Green, S. M., McDevitt, P., Johanson, K., Carter, P., Hibbs, M., Lewis, C., Chalker, A., Fosberry, A., Lalonde, J., Berge, J., Brown, P., Houge-Frydrych, C. S., Jarvest, R. L. Protein Sci. Publ. Protein Soc. 2001, 10 (10), 2008–2016.

(48) Zhulenkovs, D., Rudevica, Z., Jaudzems, K., Turks, M., Leonchiks, A. Bioorg. Med. Chem. 2014, 22 (21), 5988–6003.

(49) Mazmanian, S. K., Liu, G., Ton-That, H., Schneewind, O. Science 1999, 285 (5428), 760–763.

(50) Oefner, C., Bandera, M., Haldimann, A., Laue, H., Schulz, H., Mukhija, S., Parisi, S., Weiss, L., Lociuro, S., Dale, G. E. J. Antimicrob. Chemother. 2009, 63 (4), 687–698.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.