Synthesis of Microsheets Bi4Ti3O12 and Bi4Ti2.95V0.05O12 via Molten NaCl-KCl Salt Method
Anton Prasetyo, Andy Nur Muhammad Guntur, Suci Noerfaiqotul Himmah, Nur Aini, Usman Ali Rouf, Abdul Aziz
J. Pure App. Chem. Res. Vol 11, No 3 (2022), pp. 207-213
Submitted: August 29, 2022     Accepted: December 30, 2022     Published: December 30, 2022

Abstract


Cover Image

Bi4Ti3O12 is a tri-layer Aurivillius member compound that was reported to have good photocatalytic properties. Metal element doping and morphological particle tuning are strategies to increase photocatalyst activity. In this research, the compound micro sheets Bi4Ti3O12 and Bi4Ti2.95V0.05O12 were synthesized using molten NaCl/KCl salt. The diffractogram shows that the Bi4Ti3O12 sample was successfully synthesized, however, there are still found impurities at the Bi4Ti2.95V0.05O12 sample. Micrographs showed that the morphology particle samples is. The results of UV-Vis DRS spectra calculation show that both samples have a band gap energy of ~2.97 eV.


Keywords : Bi4Ti3O12; Bi4Ti2.95V0.05O12; molten salt synthesis; NaCl-KCl; microsheets
Full Text: PDF


References


Forgacs, E., Cserhati, T., and Orosb, G., Environ. Int., 2004, 30, 953–971.

Anwer, H., Mahmood, A., Lee, J., Kim, K.H., Park, J.W., and Yip, A.C.K., Nano Res., 2019, 12, 5, 955-972.

Zhu, Z., Wan, S., Zhao, Y., Gu, Y., Wang, Y., Qin, Y., Zhang, Z., Ge, X., Zhong, Q., and Bu, Y., Materials Reports: Energy, 2021, 1, 100019.

Rouf, U.A., Hastuti, E., and Prasetyo, A., Jurnal Kartika Kimia, 2021, 4, 1, 51-57.

Aurivillius, B. Arkiv For Kemi, 1949, I, 54, 463-480.

Khan, M. A., Nadeem, M. A. and Idriss, H., Surf. Sci. Rep., 2016, 71, 1, 1–31.

Chen, P., Liu, H., Cui, W., Lee, S.C., Wang, L., and Dong, F., EcoMat, 2020, 2, 3, e12047

Wang, Y., Zhang, X., Zhang, C., Li, R., Wang, Y., and Fan, C., Inorg. Chem. Commun., 2020, 116, 107931.

Chen, Z., Jiang, X., Zhu, C., and Shi, C., Appl. Catal. B., 2016, 199, 241–251.

Liu, Y., Zhu, G., Gao, J., Hojamberdiev, M., Zhu, R., Wei, X., Guo, Q., and Liu, P., Appl. Catal. B., 2017, 200, 72-82.

Li, H., Zhao, G., Chen, Z., Han, G., and Song, B., J. Colloid Interface Sci., 2010, 344, 247–250.

Zhao, W., Jia, Z., Lei, E., Wang, L., Li, Z., and Dai, Y., J. Phys. Chem. Solids., 2013, 74, 1604-1607.

Chen, Z., Jiang, H., Jin, W., and Shi, C., Appl. Catal. B., 2016, 180, 698-706.

Kimura, T. 2011, Molten salt synthesis of ceramic powders. Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications. Rijeka: In Tech.

Zhao, Z., Li, X., Ji, H., and Deng, M., Integr. Ferroelectr., 2014, 154, 54–158.

Januari T., Aini N., Barorroh H., Prasetyo A., IOP Conf. Ser.: Earth Environ. Sci. 2020, 456: 012013.

Marela, S.D., Aini, N., Hardian, A., Suendo, V., and Prasetyo, A., J. Pure App. Chem. Res., 2021, 10, 1, 64-71

Liu, Y., Zhu, G., Gao, J., Hojamberdiev, M., Zhu, R., Wei, X., Guo, Q., and Liu, P., Appl. Catal. B., 2017, 200, 72-82.

Shannon, R. D. 1976. Acta Crystallogr., 1976, A32, 751-767.

H. Maulidianingtiyas, A. D. Prasetiyo, F. Haikal, I. N. Cahyo, V. N. Istighfarini, and A. Prasetyo., Alchemy Jurnal Penelitian Kimia, 2021, 17, 2, 211-218.

Wang, Y., Zhang, X., Zhang, C., Li, R., Wang, Y., and Fan, C., Inorg. Chem. Commun., 2020, 116, 107931.

Lardhi, S., Noureldine, D., Harb, M., Ziani, A., Cavallo, L., and Takanabe, K., J. Chem. Phys., 2016, 144, 134702.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.