Comparison of Fabrication Technique and Carrier Oil to Curcumin Nanoemulsion Properties

Authors

  • Zubaidah Ningsih Universitas Brawijaya
  • Sepriana Puspita Dewi Syaiful Universitas Brawijaya
  • Maria L.A.D Lestari Universitas Airlangga
  • Diah Mardiana Universitas Brawijaya
  • Budi Kamulyan Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jpacr.2023.012.01.701

Keywords:

curcumin nanoemulsion, ultrasonication, wet-ball milling, microfluidic, carrier oil

Abstract

Turmeric (Curcuma longa L.) is included in the rhizome plant containing curcumin which has various therapeutic properties. However, curcumin has poor bioavailability. The manufacture of nanoemulsion is expected to increase curcumin bioavailability. This study aims to compare 3 methods (wet-ball milling, ultrasonication and microfluidic) and 3 carrier oils (soybean, virgin coconut, and olive oil) in the production of curcumin nanoemulsion. Wet-ball milling reduces particle size through grinding process using milling beads in liquid medium. Microfluidic decreases the particle size via collision of emulsion components in microchannel while ultrasound utilizes sound-wave energy to break down the particle size. Parameters compared were particle size, polydispersity index and entrapment efficiency. Particle size and polydispersity index were observed using Particle Size Analyzer with Dynamic Light Scattering technique while entrapment efficiency was measured based on the curcumin absorbance in UV-Visible spectrophotometer at 420 nm. Our study concludes that microfluidic is the most effective and efficient fabrication method which produces the smallest particle size and polydispersity index compared to ultrasonication and microfluidic. The resulting particle sizes using microfluidic are 154, 140 and 132 nm with polydispersity index of 0.224; 0.200and 0.208 insoybean,virgin coconut, and oliveoil respectively. However, entrapment efficiency is best achieved using wet-ball milling method with the average value of 49±10%. Soybean oil appears to be the most curcumin solubilizing oil compared to olive and virgin coconut oil. Thus, it can be concluded that fabrication methods and carrier oils determine curcumin nanoemulsion properties.

Downloads

Download data is not yet available.

Author Biographies

  • Zubaidah Ningsih, Universitas Brawijaya
    Department of Chemistry, Faculty of Science
  • Sepriana Puspita Dewi Syaiful, Universitas Brawijaya
    Department of Chemistry, Faculty of Science
  • Maria L.A.D Lestari, Universitas Airlangga
    Department of Pharmaceuticals Science, Faculty of Pharmacy
  • Diah Mardiana, Universitas Brawijaya
    Department of Chemistry, Faculty of Science
  • Budi Kamulyan, Universitas Brawijaya
    Department of Chemistry, Faculty of Science

References

[1] Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. del P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., Shin, H.-S. J. Nanobiotechnology 2018, 16 (1), 71.

[2] Sim, S., Wong, N. K. Biomed. Rep. 2021, 14 (5), 42.

[3] Yun, C.-H., Cho, C.-S. Pharmaceutics 2020, 12 (5), 418.

[4] Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F.-H., Qoronfleh, M. W. Biomater. Res. 2019, 23 (1), 20.

[5] Fathordoobady, F., Sannikova, N., Guo, Y., Singh, A., Kitts, D. D., Pratap-Singh, A. Sci. Rep. 2021, 11 (1), 72.

[6] Fuentes, K., Matamala, C., Martínez, N., Zúñiga, R. N., Troncoso, E. Processes 2021, 9 (11), 2002.

[7] Kumar, M., Bishnoi, R. S., Shukla, A. K., Jain, C. P. Prev. Nutr. Food Sci. 2019, 24 (3), 225–234.

[8] Ma, P., Zeng, Q., Tai, K., He, X., Yao, Y., Hong, X., Yuan, F. J. Food Sci. Technol. 2018, 55 (9), 3485–3497.

[9] Tomeh, M. A., Hadianamrei, R., Zhao, X. Int. J. Mol. Sci. 2019, 20 (5).

[10] Meng, B., Li, J., Cao, H. Curr. Pharm. Des. 2012, 19.

[11] Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., Zandi, K. BioMed Res. Int. 2014, 2014, 186864.

[12] Farzaei, M. H., Zobeiri, M., Parvizi, F., El-Senduny, F. F., Marmouzi, I., Coy-Barrera, E., Naseri, R., Nabavi, S. M., Rahimi, R., Abdollahi, M. Nutrients 2018, 10 (7), 855.

[13] Lelli, D., Sahebkar, A., Johnston, T. P., Pedone, C. Pharmacol. Res. 2017, 115, 133–148.

[14] Abdul Razzaq, P., Iftikhar, A., Faiz, F., Aman, A., Ijaz, S., Iqbal, A., Khalid, S., Sarwar, Zafar, M. 2020.

[15] Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., Xu, R. Drug Des. Devel. Ther. 2021, 15, 4503–4525.

[16] Anand, P., Kunnumakkara, A. B., Newman, R. A., Aggarwal, B. B. Mol. Pharm. 2007, 4 (6), 807–818.

[17] Lopresti, A. L. Adv. Nutr. 2018, 9 (1), 41–50.

[18] Hassan, A. K. Indian J. Pharm. Sci. 2015, 77 (4), 461–469.

[19] Sholihat, S. I., Indahyanti, E., Lestari, M. L. A. D., Ningsih, Z. IOP Conf. Ser. Mater. Sci. Eng. 2020, 833 (1), 012044.

[20] Jannah, M., Lestari, M. L. A. D., Yanti, E. I., Ningsih, Z. AIP Conf. Proc. 2021, 2360 (1), 050005.

[21] Md Saari, N. H., Chua, L. S., Hasham, R., Yuliati, L. Sci. Pharm. 2020, 88 (4), 44.

[22] Wuttikul, K., Sainakham, M. Saudi J. Biol. Sci. 2022, 29 (12), 103435.

[23] Himanath, G., Shruthy, R., Preetha, R., Sreejit, V. ACS Food Sci. Technol. 2021, 1 (9), 1538–1549.

[24] Ningsih, Z., Lestari, M., Maharin, S. ICS Phys. Chem. 2021, 1, 16.

[25] Moradi, S., Barati, A. 2019.

[26] Dat, D. V., Cuong, N. V., Le, P. H. A., Anh, T. T. L., Viet, P. T., Huong, N. T. L. Indones. J. Chem. 2020, 20 (2), 430–439.

[27] Nirmala, M. J., Durai, L., Gopakumar, V., Nagarajan, R. Int. J. Nanomedicine 2020, 15, 7651–7666.

[28] Chuffa, L. G., Rocha Vieira, F., Silva, D., Franco, D. 2014, pp 1–54.

[29] Deen, A., Visvanathan, R., Wickramarachchi, D., Marikkar, N., Nammi, S., Jayawardana, B., Liyanage, R. J. Sci. Food Agric. 2021, 101, 2182–2193.

[30] Alasmari, K., al-attar, A., Abu Zeid, I. 2020.

[31] Ji, S., Wu, J., Xu, F., Wu, Y., Xu, X., Gao, H., Ju, X., Xiong, W., Wang, L. Eur. J. Lipid Sci. Technol. 2020, 122 (10), 2000086.

[32] Franklyne, J., Nadarajan, A., Ebenazer.L, A., Tiwari, N., Mukherjee, A., Chandrasekaran, N. Int. J. Appl. Pharm. 2018, 10, 139.

[33] Páez-Hernández, G., Mondragón-Cortez, P., Espinosa-Andrews, H. LWT 2019, 111, 291–300.

[34] Takenaka, M., Ohkubo, T., Okadome, H., Sotome, I., Itoh, T., Isobe, S. Food Sci. Technol. Res. 2013, 19, 655–659.

[35] Anjana, D., Anitha Nair, K., Somashekara, N., Venkata, M., Sripathy, R., Yelucheri, R., Parmar, H., Upadhyay, R., Rama Verma, S., Ramchand, C. N. Am. J. Infect. Dis. 2012, 8 (1), 41–49.

[36] Hakim, L., Mardiana, D., Rokhiyah, U., Lestari, M. L. A. D., Ningsih, Z. Sci. Technol. Indones. 2021, 6 (3), 113–120.

Downloads

Published

2023-04-17

How to Cite

Comparison of Fabrication Technique and Carrier Oil to Curcumin Nanoemulsion Properties. (2023). The Journal of Pure and Applied Chemistry Research, 12(1), 47-56. https://doi.org/10.21776/ub.jpacr.2023.012.01.701