Antioxidant Potential of Secondary Metabolite from Kelakai (Stenochlaena palustris) as a Natural Growth Promoter Through Inhibition of Inducible Nitrite Oxide Synthase (iNOS)

Authors

  • Muhammad Irmawan Departemen of Chemistry, Faculty of Mathematics and Natural Science, Palangka Raya University
  • Meiyanti Ratna Kumalasari Departemen of Chemistry, Faculty of Mathematics and Natural Science, Palangka Raya University
  • Ardi Sandriya Departement of Veterinary, Faculty of Agriculture, Palangka Raya University
  • Nabil Fariz Noorrahman Departement of Veterinary, Faculty of Agriculture, Palangka Raya University
  • Ysrafil Ysrafil Departement of Medicine, Faculty of Medicine, Palangka Raya University
  • Lidya Tesalonika Departemen of Chemistry, Faculty of Mathematics and Natural Science, Palangka Raya University

DOI:

https://doi.org/10.21776/

Keywords:

Antioxidant, in silico, Kelakai, Natural Growth Promoter (NGP), IC50

Abstract

Kelakai (Stenochlaena palustris), a plant native to Central Kalimantan, is recognized for its potent antioxidant properties. This study aimed to investigate the preparation, extraction, phytochemical composition, antioxidant potential, and molecular interactions of secondary metabolites derived from Kelakai, emphasizing its health-promoting benefits and possible use as a natural growth enhancer. The findings revealed that the Kelakai extract contained various secondary metabolites, including alkaloids (8.868%), flavonoids (5.3%), saponins (10.76%), phenolics (1.246%), tannins (0.067%), and triterpenes (30.7%). The extract demonstrated a powerful antioxidant effect, with an IC50 value of 44.81 μg/mL. Molecular docking analysis identified chlorogenic acid and eucalyptol as essential compounds contributing to the extract's antioxidant activity. These compounds effectively inhibit the iNOS protein, with binding free energy (ΔGbinding) values of -10.3044 kcal/mol and -6.0872 kcal/mol, respectively. These findings suggest that kelakai extract possesses significant antioxidant potential and may offer valuable applications as a natural growth promoter for broiler chickens.

Downloads

Download data is not yet available.

References

[1] Amer, S. A., Al-Khalaifah, H. S., Gouda, A., Osman, A., Goda, N. I. A., Mohammed, H. A., Darwish, M. I. M., Hassan, A. M., Mohamed, S. K. A. Antioxidants, 2022, 11 (3), 544.

[2] He, L., Ma, J., Li, Q., Wang, L., Fan, S., Zhang, Y., J. Future Foods, 2022, 2 (1), 53–60.

[3] Wahyono, N. D., Utami, M. M. D. In J. Phys.: Conf. Ser., Institute of Physics Publishing, 2018, 953.

[4] BPS-Statistics Indonesia. Badan Pusat Statistik. 2023, pp 1–816.

[5] Sandriya, A., Sujoko, H., Wibowo, S., Silitonga, L., Yuanita, I., Aritonang, N., Bul. Vet. Udayana, 2023, 15(5), 905-914.

[6] Omar, A. E., Al-Khalaifah, H. S., Mohamed, W. A. M., Gharib, H. S. A., Osman, A., Al-Gabri, N. A., Amer, S. A., Front Vet Sci., 2020, 7, 582612.

[7] Foroutankhah, M., Toghyani, M., Landy, N., Anim. Nutr., 2019, 5(3), 314–318.

[8] Oleforuh-Okoleh, V. U., Ndofor-Foleng, H. M., Olorunleke, S. O., Uguru, J. O. J. Agri. Sci., 2015, 7 (4), 167.

[9] Naeemasa, M., Qotbi, A. A. A., Seidavi, A., Norris, D., Brown, D., Ginindza, M., S Afr J Anim Sci, 2015, 45 (4), 371–378.

[10] Mehdi, Y., Létourneau-Montminy, M.-P., Gaucher, M.-L., Chorfi, Y., Suresh, G., Rouissi, T., Brar, S. K., Côté, C., Ramirez, A. A., Godbout, S., Anim. Nutr., 2018, 4 (2), 170–178.

[11] Krauze, M., Cendrwoska-Pinkosz, M., Matusevicius, P., Stepniowska, A>, Jurczak, P. and Ognik, K., Anim., 2021, 11(2), 399.

[12] Yadav, A. S., Kolluri, G., Gopi, M., Karthik, K., Malik, Y. S., Dhama, K., J. Exp. Biol. Agri. Sci., 2016, 4 (3S), 368–383.

[13] Abdulameer, Y.S., Alameedee, W.M.M.N. and Zamil, S.J., REDEVET-Revista electronica de Veterinaria, 2022, 23 (3), 252–260.

[14] Zhang, Z. W., Lv, Z. H., Li, J. L., Li, S., Xu, S. W., Wang, X. L., Poult Sci., 2011, 90 (7), 1555–1561.

[15] Fatmawati, F., Fauzana, N. A., Aisiah, S., Rini, R. K., Olga, O., Tanod, W. A., Riyadi, P. H., Sains Malaysiana, 2022, 51 (8), 2531–2546.

[16] Ijarotimi, O. S., Fagoroye, O. R., and Oluwajuyitan, T. D., J. Future Foods, 2023, 3 (2), 183–189.

[17] Viveros, A., Chamorro, S., Pizarro, M., Arija, I., Centeno, C., Brenes, A. Poult Sci 2011, 90 (3), 566–578.

[18] Mountzouris, K. C., Paraskeuas, V., Tsirtsikos, P., Palamidi, I., Steiner, T., Schatzmayr, G., Fegeros, K., Anim Feed Sci Technol., 2011, 168 (3–4), 223–231.

[19] Zhong, H. J., Liu, L. J., Chong, C. M., Lu, L., Wang, M., Chan, D. S. H., Chan, P. W. H., Lee, S. M. Y., Ma, D. L., Leung, C. H., PLoS One, 2014, 9 (4), e92905.

[20] Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., Ugwuja, E.I., Aja, P.M., Sci. Rep., 2023, 13 (1), 13398.

[21] Zhang, H., Zan, J., Yu, G., Jiang, M., Liu, P., Int J Mol Sci., 2012, 13(9), 11210–11227.

[22] Shaikh, J. R., Patil, M., Int. J. Chem. Stud., 2020, 8 (2), 603–608.

[23] Adugna, H., Ezez, D., Guadie, A., Tefera, M., J Agric Food Res, 2024, 16, 101190.

[24] Muttakin, Zulfajri, M., Mariati. In J. Phys.: Conf. Ser., Institute of Physics Publishing, 2019, 1232.

[25] Indrayanto, G., Putra, G. S., and Suhud, F., Profiles Drug Subst. Excip. Relat. Methodol., 2021, 46, 273–307.

[26] Hasan, H., Ain Thomas, N., Hiola, F., Nuzul Ramadhani, F., Ibrahim, A. S., Indonesian Journal of Pharmaceutical Education, 2022, 2 (1), 67–73.

[27] Zhao, Q., Liu, X., Cui, L., Ma, C., J. Future Foods, 2024, 4(2), 111–118.

[28] Oktavia, F. D., and Sutoyo, S., J. Kim. Ris., 2021, 6 (2), 141-153.

[29] Kurang, R. Y., and Malaipada, N. A., Sebatik, 2021, 25 (2), 767–772.

[30] Cahyaningsih, E., Yuda, P. E. S. K., Santoso, P. Jurnal Ilmiah Medicamento, 2019, 5 (1), 51–57.

[31] Batubara, R., Surjanto, Ismanelly Hanum, T., Handika, A., Affandi, O., Biodiversitas 2020, 21 (4), 1588–1596.

[32] Živić, N., Milošević, S., Dekić, V., Dekić, B., Ristić, N., Ristić, M., Sretić, L., Czech J. Food Sci., 2019, 37 (5), 351–358.

[33] Hossain, Md. M., Uddin, M. S., Baral, P. K., Ferdus, M., Bhowmik, S., Asian J. Nat. Prod. Biochem., 2022, 20 (2), 41–47.

[34] Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., Yang, Y., Jin, Z., Li, B., J. Future Foods., 2024, 4(3), 193–204.

[35] Hao, H., Cui, C., Xing, Y., Jia, X., Ma, B., Kang, W., Li, T., Gao, M., Xu, C., J. Future Foods, 2023, 3 (1), 37–42.

[36] Leslie, P. J., and Gunawan, S., Tarumanagara Medical Journal, 2019, 1 (2), 383–388.

[37] Gharechopogh, A. M., Fakhraei, J., Hosseini, S. A., Yarahmadi, H. M., Lotfollahian, H., Trop. Anim. Sci. J., 2021, 44 (1), 62–70.

[38] Cao, C., Zhao, X., Fan, R., Zhao, J., Luan, Y., Zhang, Z., Xu, S., Biol Trace Elem Res 2016, 172, 222–227.

[39] Fatmawati, Fauzana, N. A., Aisiah, S., Rini, R. K., Olga, Tanod, W. A., Riyadi, P. H., Sains Malaysiana, 2022, 51 (8), 2531–2546.

[40] Herawati, H., Oktanella, Y., Anisa, A. K., Adv. Anim. Vet. Sci., 2021, 9 (4), 519-524.

[41] Singh, Y., Nikunjkumar, P., Saxena, B., Ramakrisnan, S., Environ. Conserv. J., 2021, 22 (3), 433–439.

[42] Papi, S., Ahmadizar, F., and Hasanvand, A., Immunopathol. Persa, 2019, 5(1), e08–e08.

[43] Pickering, R. J. Antioxidants, 2021, 10(2), 171.

[44] Khondowe, P., Mutayoba, B., Muhairwa, A., Phiri, E., Vet. Anim. Sci., 2021, 14, 100221.

[45] Sumanto, D. In International Seminar on Livestock Production and Veterinary Technology, 2016, 462–468.

[46] Khadem, A., Soler, L., Everaert, N., and Niewold, T. A., Br. J. Nutr., 2014, 112 (7), 1110–1118.

[47] Pashaei, M., Fayçal, Z., Kahrizi, D., Ercisli, S., J. Poult. Sci. Avian Dis., 2024, 2 (2), 36–49.

[48] Basiouni, S., Tellez-Isaias, G., Latorre, J. D., Graham, B. D., Petrone-Garcia, V. M., El-Seedi, H. R., Yalçın, S., El-Wahab, A. A., Visscher, C., May-Simera, H. L., Vet. Sci., 2023, 10 (1), 55.

[49] Sander, T., Freyss, J., Von Korff, M., Rufener, C., J. Chem. Inf. Model, 2015, 55 (2), 460–473.

[50] Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., Liu, S. Q., Int. J. Mol. Sci., 2016, 17(2), 144.

[51] Laurent, F., Mancassola, R., Lacroix, S., Menezes, R., Naciri, M., Infect. Immun., 2001, 69 (4), 2527–2534.

[52] Robinson, M. A., Baumgardner, J. E., and Otto, C. M., Free Radic. Biol. Med., 2011, 51(11), 1952–1965.

Published

2025-04-25

How to Cite

Antioxidant Potential of Secondary Metabolite from Kelakai (Stenochlaena palustris) as a Natural Growth Promoter Through Inhibition of Inducible Nitrite Oxide Synthase (iNOS). (2025). The Journal of Pure and Applied Chemistry Research, 14(1), 44-58. https://doi.org/10.21776/