Determination of the radical-scavenging activities and identification of anthocyanins from Hexalobus monopetalus ripe fruits
Arrounan Noba, Adama Hema, Elie Kabré, Bazoin Sylvain Raoul Bazié, Paulin Ouôba, Constantin M. Dabiré, Remy K. Bationo, Moumouni Koala, Eloi Palé, Mouhoussine Nacro
J. Pure App. Chem. Res. Vol 11, No 1 (2022), pp. 54 - 71
Submitted: August 24, 2021     Accepted: April 25, 2022     Published: April 25, 2022


Cover Image

A wild fruit from classified forest of Dindéresso was analyzed for total phenolics, flavonoids, anthocyanins compounds using the Folin-Ciocalteu reagent, spectrophotometric method of Zhishen and colleagues and by the differential pH method respectively. Free radical-scavenging activities of studied fruits extracts were estimated using diammonium 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) salt method. Three major anthocyanins were identified using high performance liquid chromatography coupled with spray ionization interface mass spectrometry. Three identified anthocyanins in fruit were reported to be cyanidin 3-O-(p-coumaroyl) glucoside, pelargonidin 3-O-glucoside and pelargonidin 3-O-rutinoside. In addition, H. monopetalus fruit contained of about 1165±3.1 mg of GAE per 100 g of fresh fruit, 4490±20.2 mg of QE per 100 g of fresh fruit, and 36±0.17 mg of cyanidin 3-O-glucoside equivalents per 100 g of fresh fruit. Total anthocyanin extract had an EC50 = 4.24 mg per mL and a TEC50 time of 21 minutes (intermediate reaction). This free radical-scavenging activity was very low compared to those of the references used (0.024 and 0.034 mg/mL respectively for ascorbic acid and Trolox). The low antiradical activity and reactivity of the H. mucronata extract could be explained by several factors. In any case, fruits of this species were potential sources of natural bioactive substances having beneficial effects on the health of consumers.

Keywords : Hexalobus monopetalus ; ripe fruits ; HPLC-MS/MS ; anthocyanins ; antioxidants
Full Text: PDF


[1] Kouebou, C., Goygoy, F., Bourou, S., Djakissam, P.K., Layla, H., Zenabou, G., Barbi, M., Vunyingah, M and Woin, N. JABs, J. Appl. Biosci, 2013, 69, 5523–5533.

[2] Djaha, A. J and Gnahoua, G. M, JABs, J. Appl. Biosci, 2014, 78 (1), 6620–6629.

[3] Gordon, M. H, Nat. Prod. Rep, 1996, 13 (4), 265–273.

[4] Halliwell, B, Annu. Rev. Nutr, 1996, 16 (1), 33–50.

[5] Feskanich, D., Ziegler, R. G., Michaud, D. S., Giovannucci, E. L., Speizer, F. E., Willett, W. C and Colditz, G. A, J. Natl. Cancer Inst, 2000, 92 (22), 1812–1823.

[6] Lim, Y. Y., Lim, T. T and Tee, J. J, Food Chem, 2007, 103 (3), 1003–1008.

[7] Rocco, A., Fanali, C., Dugo, L., Mondello, L. Electrophoresis 2014, 35 (11), 1701–1708.

[8] Williamson, G, Nutr. Bull, 2017, 42 (3), 226–235.

[9] Schantz, M., Mohn, C., Baum, M., Richling, E, J. Berry Res, 2010, 1 (1), 25–33.

[10] Weisel, T., Baum, M., Eisenbrand, G., Dietrich, H., Will, F., Stockis, J. P., Kulling, S., Rüfer, C., Johannes, C and Janzowski, C. Biotechnol. J, 2006, 1 (4), 388–397.

[11] Habanova, M., Saraiva, J. A., Haban, M., Schwarzova, M., Chlebo, P., Predna, L., Gažo, J and Wyka, J. Nutr. Res, 2016, 36 (12), 1415–1422.

[12] Bakuradze, T., Tausend, A., Galan, J., Anna, I., Groh, M., Berry, D., Tur, J. A., Marko, D., Richling, E., Bakuradze, T., Tausend, A., Galan, J., Anna, I., Groh, M., Berry, D., Tur, J. A., Marko, D and Richling, E. Free Radic, Res. 2019, 53 (S1), 1045–1055.

[13] Singleton, V. L., Orthofer, R and Lamuela-Raventos, R. M. Methods Enzym, 1999, 299, 152–178.

[14] Zhishen, J., Mengcheng, T and Jianming, W. Food Chem, 1999, 64, 555–559.

[15] Dewanto, V., Wu, X., Adom, K. K and Liu, R. H. Journal Agric. Food Chem, 2002, 50, 3010–3014.

[16] Sakanaka, S., Tachibana, Y and Okada, Y. Food Chem, 2005, 89, 569–575.

[17] Khan, R. A, Chem. Cent, J, 2012, 6, 1–7.

[18] Wrolstad, R. E, Food Anal. Chem, 2001, 1–13.

[19] Giusti, M. M., Polit, M. F., Ayvaz, H., Tay, D and Manrique, I. J. Agric. Food Chem, 2015, 1–14.

[20] El, E., Youssef, M., Kharrassi, E., Moustaid, K., Khalid, A and Boubker, E. J. Food Meas. Charact, 2019, 13, 121–130.

[21] Fuleki, T and Francis, F. J. J. Food Sci, 1968, 33, 78–83.

[22] Popovici, C., Saykova, I and Tylkowski, B. Rev. génie Ind, 2009, 4, 26–39.

[23] Ribereau-Gayon, P. DUNOD Paris 6ème édition, 1968, 144–172.

[24] Giusti, M. M., Rodríguez-Saona, L. E., Griffin, D and Wrolstad, R. E. J. Agric. Food Chem, 1999, 47 (11), 4657–4664.

[25] Lopes-Da-Silva, F., De Pascual-Teresa, S., Rivas-Gonzalo, J and Santos-Buelga, C. Eur. Food Res. Technol, 2002, 214 (3), 248–253.

[26] Wu, X., Prior, R. L. J. Agric. Food Chem, 2005, 53 (8), 3101–3113.

[27] Horbowicz, M., Kosson, R., Grzesiuk, A., Debski, H. Veg. Crop. Res. Bull, 2008, 68, 5–22.

[28] Palé, E. Contribution à l’étude des composés anthocyaniques des plantes : cas de Hibiscus sabdariffa, Lannea microcarpa, Vigna subterranea et Sorghum caudatum du Burkina Faso., Université Joseph KI-ZERBO, Burkina Faso, 1998.

[29] Kubola, J., Siriamornpun, S., and Meeso, N. Food Chem, 2011, 126, 972–981.

[30] Lamien-Meda, A., Lamien, C. E., Compaoré, M. Y. M., Meda, N. T. R., Kiendrebeogo, M., Zeba, B., Millogo, J. F and Nacoulma, O. G. Molecules, 2008, 13, 581–594.

[31] Trappey III, R. J., Woodside, A. G. J. Advert. Res, 2005, 45 (04), 382–401.

[32] Noba, A., Koala, M., Hema, A., Bationo, R. K., Constantin, M., Palé, E., Nacro, M. African J. Pure Appl. Chem, 2020, 14 (3), 60–68.

[33] Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., Premier, R, Food Chem, 2007, 101, 1727–1741.

[34] Wang, H., Cao, G., Prior, R. L, J. Agric. Food Chem, 1997, 45 (2), 304–309.

[35] Bors, W., Heller, W., Michel, C and Saran, M, methods Enzymol, 1990, 186, 343–355.

[36] Swamy, M. K, Springer Nat. Singapore Pte Ltd, 2020, 1–592.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.