Effect of Calcination Temperature on The Synthesis of Silica from Bagasse
Poedji Loekitowati Hariani, Fahma Riyanti, Desneli Desneli, Fatma Fatma, Sabila Yunita, Muhammad Said
J. Pure App. Chem. Res. Vol 10, No 2 (2021), pp. 140 - 147
Submitted: March 04, 2021     Accepted: August 31, 2021     Published: August 31, 2021

Abstract


Cover Image

Bagasse is the solid waste derived from the sugar-making process. A large amount of silica in bagasse is a potential source of silica. In this study, extraction of silica from bagasse was carried out in the following steps: pretreatment of bagasse using HCl solution, followed by calcination at varying temperatures (700℃, 800℃, and 900℃) using a furnace. Furthermore, extraction using NaOH solution and precipitation using HCl. Silica characteristics were obtained using X-Ray Diffraction (XRD), Scanning Electron Microscopy-Electron Dispersive Spectrometry (SEM-EDS), and BET surface area. The results showed that calcination temperature affected the characteristics of the silica produced. The silica extracted at 700℃ produced an amorphous phase with a broad peak at an angle of 2θ = 20-24°. It contained the most considerable silica content and surface area, 42.46% and 796.89 cm2/g, respectively. The extracted silica had an average diameter of 5.67 mm and a pore volume of 1.184 cm3/g.


Keywords : silica, bagasse, calcination temperature
Full Text: PDF


References


[1] Sholeh, M., Rochmadi, R., Sulistyo, H. and Budhijanto, B, J. Sol-Gel Sci. Technol., 2020, 97 (1), 1-12.

[2] Alves, B.H., Reis, T.V.S., Rovani, S. and Fungaro, D.A, J. Chem., 2017, 2017, 1-9.

[3] Megawati, D.S. Fardhyanti, R.D.A. Putri, O. Fianti, A.F. Simalango, A.E. Akhir. MATEC., 2018, 237, 1-6.

[4] Xu, Q., Ji, T., Gao, S., Yang, Z. and Wu, N, Materials., 2019, 12 (1), 1-19.

[5] Farirai, F., Mupa, M. and Daramola, M.O, Particul. Sci. Technol, 2020, 2020, 1-9.

[6] Norsuraya, S., Fazlena, H. and Norhasyimi, R, Procedia Eng., 2016, 148, 839-846

[7] Agredo, J.T., Gutierrez, R.M., Giraldo, C.E.E. and L.O.G. Salcedo. Ing e Investig., 2014, 34 (1), 5-10

[8] Amin, N., Faizal, M., Muhammad, K., and Gul, S, Clay. J Clean Prod., 2016, 129, 491–495.

[9] Suliman, M.E. and Almola, S.M.F, Sci. Vis., 2011, 16, 65-69.

[10] Channoy, C, Maneewan, S, Punlek, C and Chirarattananon S. Adv. Mat. Res., 2018, 1145, 44-48.

[11] Kumar, S, Malik, M,M and Purohit, R, Mater. Today., 2017, 4 (2), 350-357.

[12] Kalapathy, U, Proctor, A, and Shultz, J, Bioresour. Technol., 2000, 73 (3), 257-262.

[13] Lender, P.W, Catal. Today., 1992, 15, 243-261.

[14] Chindaprasirt, P. U, Rattanasak. Sci. Rep., 2020, 10, 1-8.

[15] Huang, C, Chang, K Ou, H, Chiang, Y, and Wang C, Microporous Mesoporous Mater., 2011, 141, 102-109.

[16] Farias, R.S, Buargue, H.G.B, Cruz, M.R, Cardosao, L.M.A, Gondim, T.A and Paulo, T.A, Eng Sanit Ambient., 2018, 23, 1053-1060.

[17] Michailidis, M, Bellido, I,S, Adamidou, E, Fernandez, Y,A,D, Aveyard, J,L, Wengier, R, Grigoriev, D,O, Raval, R, Benayahu, Y D'Sa, R, and Shchukin, D,G, ACS. Appl. Mater. Interface., 2017, 9, 38364-38372.

[18] Vaibhav. V, Vijayalakshmi, U and Roopan, S,M, Spectrochim Acta A Mol Biomol Spectrosc., 2015, 15 (139), 515-520.

[19] Affandi, S, Setyawan, H, Winardi, S, Purwanto, A and Balqis, A, Adv. Powder Technol., 2009, 20, 468-472.

[20] San, N.Y, Kursungoz, C, Tumtas, Y, Yasa, O, Ortac, B and Tekinay, T, Particulogy., 2014, 17, 29-35.

[21] Deshmukh, P, Bhatt, J, Peshwe, D and Pathak, S, Particul. Sci. Technol., 2012, 65, 63-70.

[22] Worathanakul, P, Payubnop, W and Muangpet, A, IJCME. 2009, 3, 398-400.

[23] Bahurudeen, A and Santhanam. A, Cem. Concr. Compos., 2015, 56, 32-45.

[24] Norhasyimi., R. Sabali, M. A., Sandu, A.V., Sahirona and N., Sandu, I. G. Rev. de Chim., 2016, 67 (9), 1872-1875.

[25] Kongmanklang, C and Rangsriwatananon, K, J. Spectrosc., 2015, 1-6.

[26] RA Bakar. R. Yahya, S. N. Gan. Procedia Chem., 2016, 19, 189-195.

[27] Wanyika, H, Gatebe, E, Kioni, P, Tang, Z and Gao, Z, Afr. J. Pharm. Pharmacol., 2011, 5 (21), 2402-2410.

[28] Chandrasekhar, S., Pramada, P.N. and Praveen, L, J. Mat. Sci., 2005, 40, 6533-6544.

[29] Nazriati, N., Setyawan, H., Affandi, S., Yuwana, M. and Winardi, S, J. Non. Cryst. Solid., 2014, 400, 6-11.

[30] Costa, J.A.S. and Paranhos, C.M, J. Clean. Prod., 2018, 192, 688-697.

[31] Fernades, I.J., Calheiro, D., Sanchez, F.A.L., Camacho, A.L.D., Rocha, T.L.A.C., Moraes, C.A.M. and Sousa, V.C, Mater. Res. 2017, 20 (2), 512-518.

[32] Purnawira, B., Purwaningsih, H., Ervianto, Y., Pratiwi, V.M., Susanti, D., Rochiem, R. and Purniawan, A, IOP conf. ser., Mater. Sci. Eng, 2019, 541, 1-7.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.