The Performance of Activated Carbon from Used Coffee Grounds Combined with Iron(III) Oxide under UV Light and Ultrasound for Phenol Degradation
Abstract

References
(1) Ballesteros, L. F., Teixeira, J. A., Mussatto, S. I. Food Bioprocess Technol 2014, 7 (12), 3493–3503. https://doi.org/10.1007/s11947-014-1349-z.
(2) Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., Oomah, B. D. Trends in Food Science & Technology 2015, 45 (1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012.
(3) Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., Morais, S., Casal, S. J. Agric. Food Chem. 2012, 60 (32), 7777–7784. https://doi.org/10.1021/jf3018854.
(4) Gami, A. A., Shukor, M. Y., Khalil, K. A., Dahalan, F. A., Khalid, A., Ahmad, S. A. JEMAT. 2014, 2 (1), 11–24.
(5) Prasannakumar, B. R., Regupathi, I., Murugesan, T. J. Chem. Technol. Biotechnol. 2009, 84 (1), 83–91. https://doi.org/10.1002/jctb.2010.
(6) Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., Liu, S. IJERPH 2016, 13 (3), 300. https://doi.org/10.3390/ijerph13030300.
(7) Yu, L., Chen, J., Liang, Z., Xu, W., Chen, L., Ye, D. Separation and Purification Technology 2016, 171, 80–87. https://doi.org/10.1016/j.seppur.2016.07.020.
(8) Wu, Z.-L., Ondruschka, B., Cravotto, G. Environ. Sci. Technol. 2008, 42 (21), 8083–8087. https://doi.org/10.1021/es8013375.
(9) Parida, K. M., Parija, S. Solar Energy 2006, 80 (8), 1048–1054. https://doi.org/10.1016/j.solener.2005.04.025.
(10) Yehia, F. Z., Eshaq, Gh., Rabie, A. M., Mady, A. H., ElMetwally, A. E. Egyptian Journal of Petroleum 2015, 24 (1), 13–18. https://doi.org/10.1016/j.ejpe.2015.03.002.
(11) Yuliusman, Nasruddin, Afdhol, M. K., Haris, F., Amiliana, R. A., Hanafi, A., Ramadhan, I. T. adv sci lett 2017, 23 (6), 5751–5755. https://doi.org/10.1166/asl.2017.8822.
(12) Aznar, J. S. Characterization of activated carbon produced from coffee residues by chemical and physical activation, KTH Vetenskap Och Konst, Stockolm, 2011.
(13) Alves, A. C. F., Antero, R. V. P., de Oliveira, S. B., Ojala, S. A., Scalize, P. S. Environ Sci Pollut Res 2019, 26 (24), 24850–24862. https://doi.org/10.1007/s11356-019-05717-7.
(14) Kante, K., Nieto-Delgado, C., Rangel-Mendez, J. R., Bandosz, T. J. Journal of Hazardous Materials 2012, 201–202, 141–147. https://doi.org/10.1016/j.jhazmat.2011.11.053.
(15) Gao, Y., Zou, D., Liu, Y., Guan, H., Sun, W. Clean – Soil, Air, Water 2019, 47 (10), 1900095. https://doi.org/10.1002/clen.201900095.
(16) Kim, M.-S., Kim, J.-G. Environments 2020, 7 (4), 24. https://doi.org/10.3390/environments7040024.
(17) Farahmandjou, M., Soflaee, F. PCR 2015, 3 (3). https://doi.org/10.22036/pcr.2015.9193.
(18) Kidak, R., Ince, N. H. Ultrasonics Sonochemistry 2006, 13 (3), 195–199. https://doi.org/10.1016/j.ultsonch.2005.11.004.
(19) Xu, P., Zeng, G., Huang, D., Liu, L., Lai, C., Chen, M., Zhang, C., He, X., Lai, M., He, Y. RSC Adv. 2014, 4 (77), 40828–40836. https://doi.org/10.1039/C4RA05996D.
(20) Papadaki, M. Separation and Purification Technology 2004, 34 (1–3), 35–42. https://doi.org/10.1016/S1383-5866(03)00172-2.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.