The Effect of Temperature Synthesis on the Plate-Like Particle of Bi4Ti3O12 Obtained by Single Molten NaCl Salt
sheley Marela, Nur Aini, Arie Hardian, Veinardi Suendo, Anton Prasetyo
J. Pure App. Chem. Res. Vol 10, No 1 (2021), pp.
Submitted: September 23, 2020     Accepted: April 08, 2021     Published: April 08, 2021

Abstract



Three-layer Aurivillius compound bismuth titanate (Bi4Ti3O12) is well known for having interesting properties such as ferroelectric and photocatalyst. Many researchers reported that the unique plate-like shaped particle affecting ferroelectric and photocatalyst properties. The molten salt synthesis is the common simple method to obtain that unique morphology. In this research, Bi4Ti3O12 was synthesized using single molten salt NaCl at various temperatures, which is 800, 850, 900, and 950 oC. X-Ray Diffraction data showed that all obtained Bi4Ti3O12 have a B2cb space group with no impurities detected. The Raman spectra shows the characteristic vibration modes of Bi4Ti3O12 at 62, 117, 228, 269, 332, 364, 536, 851 cm-1. The plate-like shaped particle was confirmed by SEM analysis. Based on SEM images, the size of the particle increased along with the synthesis temperature, which is due to the thermal effect on grain growth.

Keywords : Bismuth titanate, temperature synthesis, molten salt synthesis, plate-like shaped particle


References


[1] De Araujo, C.P., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature, 1995, 374(6523), 627-629.

[2] Liu, X., Xu, L., Huang, Y., Qin, C., Qin, L., and Seo, H.J., Ceram. Int., 2017, 43(15), 12372–12380.

[3] Yu, L., Hao, J., Xu, Z., Li, W., Chu, R., Li, G., Ceram. Int., 2016, 42(13), 14849–14854.

[4] Aurivillius, B., Ark. Kemi Band I, 1949, 54, 463–480.

[5] Aurivillius, B., Ark. Kemi Band I 1949, 58 499–512.

[6] Khomchenko, V.A., Kakazei, G.N., Pogorelov, Y.G., Araujo, J.P., Bushinsky, M.V., Kiselev, D.A., Kholkin, A.L., and Paixao, J.A., Mater. Lett., 2010, 64(9), 1066–1068.

[7] Osada, M., Tada, M., Kakihana, M., Noguchi, Y., and Miyayama, M., Mater. Sci. Eng., B., 2005, 120(1-3), 95–99.

[8] Withers R.L., Thompson J.G., and Rae A.D., J. Solid State Chem., 1991, 94(2), 404–417.

[9] Nunes L.M., Antonelli, E., Bernardi, M.I.B., Oladeinde, T.O., Caceres, J.A.S., and M’Peko, J.C., Mater. Res. Bull., 2011, 46(1), 136-139.

[10] Chen, Z., Jiang, X., Zhu, C, and Shi, C., Appl. Catal. B., 2016, 199, 241–251.

[11] Zhao, X., Yang, H., Li, S., Cui, Z., and Zhang, C., Mater. Res. Bull., 2018, 107, 180-188.

[12] Zhao, W., Jia, Z., Lei, E., Wang, L., Li, Z., and Dai, Y., J. Phys. Chem. Solids., 2013, 74(11), 1604–1607.

[13] Arney, D., Porter, B., Greve, B., and Maggard, P.A., J. Photochem. Photobiol. A., 2008, 199(2-3), 230–235.

[14] Lin, X., Lv, P., Guan, Q., Li, H., Zhai, H., and Liu, C., Appl. Surf. Sci., 2012, 258(18), 7146–7153.

[15] Akdogan, E.K., Brennad, R.E., Allahverdi, M, and Safari, A., 2006, J Electroceram. 16(2), 159–165.

[16] Zhang, C.S., and Guo, C.J., Adv. Mater. Res., 2011, 239–2422, 2170–2173.

[17] Zhao, Z., Li, X., Ji, H., Deng, M., Integr. Ferroelectr., 2014, 154, 154–158.

[18] Januari, T., Aini, N., Barorroh, H., dan Prasetyo, A., IOP Conf. Ser.: Earth Environ. Sci. 2020, 456, 012013.

[19] Hunter, B.A., and Howard, C.J., A computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns, Lucas Heights Research Laboratories, NSW, Australia, 2000,1–27.

[20] Ladd, M.F.C., and Palmer, R.A., Structure Determination by X-ray Crystallography., 1977, New York, Plenum Press.

[21] Dobal, P.S., and Katiyar, R.S., J. Raman Spectrosc., 2002, 33(6), 405–423.

[22] Prasetyo, A., Mihailova, B., Suendo, V., Nugroho, A.A., and Ismunandar., J. Appl. Phys. 2015, 117.

[23] Prasetyo, A., Mihailova, B., Suendo, V., Nugroho, A.A., Zulhadjri, Ismunandar, IOP Conf. Ser: Mater. Sci. Eng., 2017, 196(1), 012041.

[24] Du, Y.L., Zhang, M.S., Chen, Q., and Yin, Z., Appl. Phys. A. Mater., 2003, 76(7), 1099-1103.

[25] Ranieri, M.G.A., Aguiar, E.C., Cilense, M., Simões, A.Z., and Varela, J.A., Cer. Int., 2013., 39(7), 7291-7296.

[26] Mullin, J.W., Crystallization, Butterworth-Heinemann, 2001, London, UK.

[27] Meir, R., Vradman, L., Zana, J., and Herskowitz, M., Mater. Chem. Phys., 2019, 231, 181-187.

[27] Jiang, D., Zhou, Z., Liang, R., and Dong, X., J. Eur. Cer. Soc, 2021, 41-2, 1244-1250.

[28] Liu, C., Liu, X., Hou, Z., Jia, Q., Cheng, B., and Zhang, S., Mat, 2020., 13-70.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.