The Effect of NaCl Concentration and Incubation Time on Oxalate and Total Acid in Fermented Cabbage using Various Microorganisms
Arie Srihardyastuti, Sasangka Prasetyawan, Radhinal Zikri Firdaus, Fidelia Berenice Prayugo, Yolanda Kresmonia, Tinok Dwi Ananda, Alfi Salamah
J. Pure App. Chem. Res. Vol 10, No 1 (2021), pp.
Submitted: September 10, 2020     Accepted: April 03, 2021     Published: April 03, 2021


As the highest agrocultural product, cabbage (Brassica oleracea var. capitata) remain consider as perishable vegetable and also known to contain an antinutritional compound, called oxalate.  The oxalate salts is non-soluble compound in water, and thus settle on human kidney. The preservation and improvement of the nutritional aspect of cabbage can be achieved by fermentation through the enzyme production. Therefore, we study the effect of salt addition and incubation time, as the two important factor in commonly cabbage-based fermentation, combined with someoxalate-degrading-bacteria, which wasL. plantarum, L. plantarum – S. cerevisiae, and A. aceti – S. cerevisiae on the oxalate and total acid level in cabbage fermentation. The fermentation was conducted in submerged system at room temperature (25 – 27 °C) with the NaCl concentration addition ranging from 0 – 5% until 10 days. Those condition was carried out for the three types of the tested cultures. The oxalate and total acid level was measured using the permanganometric and acid base titration, respectively. The results indicated that L. plantarum-induced fermentation combined with 3% NaCl during 10 days gave the lowest oxalate level in the fermented cabbage biomass,which was 0.005 mg/100 g FW. Moreover, these single-cultured fermentation was able to produce the highest total acid level in the brine solution, 1.270% at the 8 days of fermentation. This fermentation serves as an alternative method to improve cabbage consumption.

Keywords : cabbage, fermentation, oxalate, total acid


[1] Turroni, S., Vitali, B., Bendazzoli, C., Candela, M., Gotti, R., Federici, F., Pirovano, F., and Brigidi, P., J. Appl. Microbiol, 2007, 103(5), 1600–1609.

[2] Peck, A.B., Canales, B.K., and Nguyen, C.Q., Urolithiasis, 2016, 44(1), 45-50.

[3] Ogbede, S.C., Saidu, A.N., Kabiru, A.Y. and Busari, M.B., IOSR Journal Of Pharmacy, 2015, 5(3), 19-25.

[4] Kumar, V., Irfan, M., and Datta, A., Phytochemistry, 2019, 158, 103–109.

[5] Thierie, J., and Penninckx, M., Crabtree Effect, 2009, Encyclopedia of Industrial Biotechnology, Bioseparation, and Cell Technology, Hoboken, NJ, USA: John Wiley & Sons, Inc.

[6] Anbazhagan, K., Sasikumar, P., Gomathi, S., Priya, H.P., and Selvam, G.S., J. Appl. Microbiol., 2013, 115(3), 880–887.

[7] Foster, J., and Nakata, P.A., FEBS Lett., 2014, 588(1), 160–166.

[8] Mullins, E.A., Starks, C.M., Francois, J.A., Sael, L., Kihara, D., and Kappock, T.J., Protein Sci, 2012, 21(5), 686–696.

[9] Lee, K.W., Shim, J.M., Kim, D.W., Yao, Z., Kim, J.A., Kim, H.J., and Kim, J.H., Food Sci. Biotechnol., 2017, 27(2), 489-498.

[10] Ahmadsah, L.S., Min, S.G., Han, S.K., Hong, Y., and Kim, H.Y., J. Microbiol. Biotechnol., 2015, 25(12), 2049–2057.

[11] Hayati, R., Fadhil, R., and Agustina, R., JRTP, 2017, 10(2), 23–34.

[12] Peñas, E., Pihlava, J.M., Vidal-Valverde, C., and Frias, J., LWT - Food Sci. Technol., 2012, 48(1), 16–23.

[13] Viander, B., Maki, M., and Palva, A., Food Microbiol, 2003, 20(4), 291–395.

[14] Wiander, B., and Ryhanen, E.L., Eur. Food Res. Technol., 2015, 220(2), 191–195.

[15] Mayo, B., and Flórez, A.B., Reference Module in Food Science, 2020, 1-8.

[16] Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., and Kong, H., Biomass Bioenergy, 2012, 47, 395–401.

[17] Mamlouk, D., and Gullo, M., Indian J. Microbiol., 2013, 53(4), 377–384.

[18] Fahmia, A.R., Srihardyastutie, A., Prasetyawan, S., and Safitri, A., IOP Conf. Ser. Mater. Sci. Eng., 2019, 546, 062006.

[19] Ananda, T.D., Srihardyastutie, A., Prasetyawan, S., and Safitri, A., IOP Conf. Ser. Mater. Sci. Eng., 2019, 546, 062004.

[20] Salamah, A., Srihardyastutie, A., Prasetyawan, S., and Safitri, A., IOP Conf. Ser. Mater. Sci. Eng., 2019, 546, 062028.

[21] Wadamori, Y., Vanhanen, L., and Savage, G.P., Foods, 2014, 3(2), 269–278.

[22] Suprihatin., and Perwitasari, D.S., Pembuatan Asam Laktat dari Limbah Kubis, Makalah Seminar Nasional Teknik Kimia Soebardjo Brotohardjono, 2010.

[23] Hill, J.H., and White, E.C., J. Bacteriol, 1929, 18(1), 43–57.

[24] Omotoyinbo, O.V., and Omtoyinbo, B.I., Cell Biology, 2016, 4(5), 31–34.

[25] Rao, M.S., Pintado, J., Stevens, W.F., and Guyot, J.P., Bioresour. Technol, 2004, 94(3), 331–337.

[26] Zahoor, T., Siddique, F., and Farooq, U., Br. Food J., 2006, 108(6), 429–439.

[27] Park, W.K., Yang, J.W., and Kim, H.S., J. Ind. Microbiol. Biotechnol., 2015, 42(4), 567–575.

[28] Ahangangoda Arachchige, M.S., Mizutani, O., and Toyama, H., Biotechnol. Biotechnol. Equip., 2019, 33(1), 1505–1515.

[29] Tekarslan-Sahin, S.H., Alkim, C., and Sezgin, T., Bosn. J. Basic Med. Sci., 2018, 18(1), 55.

[30] Chen, X., Wang, T., Jin, M., Tan, Y., Liu, L., Liu L., Li, C., Yang, Y., and Du, P., Int. J. Food Sci. Technol., 2020, 55(11), 3441–3454.

[31] Hibbing, M.E., Fuqua, C., Parsek, M.R., and Peterson, S.B., Nat. Rev. Microbiol., 2010, 8(1), 15–25.

[32] Gomathi, S., Sasikumar, P., Anbazhagan, K., Sasikumar, S., Kavitha, M., Selvi, M.S., and Selvam, G.S., Sci. World J., 2014, 2014, 1–11.

[33] Agustin, R., Estiasih, T., and Wardani, A., JTP, 2017, 18(3), 191–200.

[34] Hesseltine, C.W., Mixed Culture Fermentation, in Application of Biotechnology to Traditional Fermented Food, 1992, National Academies Press, Washington DC.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.