Inhibitory Effect of Some Methylxanthines on Copper Corrosion in 1M HNO3: Experimental, DFT and QSPR Studies

Authors

  • Victorien Kouakou Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
  • TIGORI Mougo André UNIVERSITE OF DALOA
  • Amadou Kouyaté UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
  • Paulin Marius Niamien Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire

DOI:

https://doi.org/10.21776/ub.jpacr.2021.010.01.548

Keywords:

Methylxanthines, Mass loss measurements, DFT, QSPR, Copper corrosion

Abstract

Inhibition corrosion of metals by using organic compounds has become an unavoidable means. So, in this work, the effect of methylxanthines on copper corrosion inhibition in 1M HNO3 was investigated by mass loss measurements and by two theoretical approaches: Density Functional Theory (DFT) and Quantitative Structure-Property Relationship (QSPR.) Quantum chemical calculations based on DFT at the B3LYP/6-31G(d) level permit to establish a correlation between the quantum chemical parameters and the experimental inhibition efficiency (IE %). It was found that inhibition efficiencies increase with increasing temperature and immersion time. In addition, the QSPR approach was used to find the best set of parameters for each molecule. This set of parameters make it possible to characterize the inhibition performance of the tested molecules solution significantly. The theoretical calculations are consistent with the experimental results.

Downloads

Download data is not yet available.

Author Biography

  • TIGORI Mougo André, UNIVERSITE OF DALOA
    environmental training and research unit

References

[1] Mu, G., Li, X., Qu, Q., and Zhou, J., Corros. Sci., 2006, 48(2), 445–459.
[2] Samiento-Bustos, E., Rodriguez, J.G., Uruchurtu, J., Dominguez- Patino, G., and Salinas-Bravo, V.M., Corros. Sci., 2008, 50(8), 2296–2303.
[3] Bastos, A.C., Ferreira, M.G., and Simoes, A.M., Corros. Sci., 2006, 48(6), 1500–1512.
[4] Broussard, G., Bramanti, O., and Marchese, F.M., Occup. Med., 1997, 47(6), 337–340.
[5] Lgaz, H., Salghi, R., Jodeh, S., and Hammouti, B., J. Mol. Liq. ,2017, 225, 271-280.
[6] Eddy, N.O., and Odoemelam, S.A., Adv. Nat. Appl. Sci, 2008, 2(3), 225-232.
[7] Eddy, N.O., Odoemelam, S.A., and Ekwumemgbo, P., Sci. Res. Essays, 2009, 4(1), 033–038.
[8] Ouattara, S., Tigori, M.A., Kouakou, V., Niamien, P.M., Trokourey, A., Pharm. Chem. J., 2018, 5(6), 29-44.
[9] Obot, I.B., Port. Electrochim. Acta, 2009, 27(5), 539–553.
[10] Obot, I.B., and Obi-Egbedi, N.O, Corros. Sci, 2010, 52(1), 198–204.
[11] Obot, I.B., Obi-Egbedi, N.O., and Umoren, S.A, Int. J. Electrochem. Sci., 2009, 4, 863–877.
[12] Prabhu, R.A., Shanbhag, A.V., and Venkatesha, T.V., J Appl Electrochem, 2007, 37, 491–497.
[13] Solmaz, R., Corros. Sci., 2014, 81, 75-84.
[14] Tigori, M.A., Bony, F.N., Niamien, P.M., Yapo, A.J., and Trokourey, A., Arch. Appl. Sci. Res, 2016, 8(5),18-32.
[15] Bouklah, M., Benchat, N., Aouniti, A., Hammouti, B., Benkaddour, M., Lagrénée, M., Vezin, H., and Bentiss, F., Prog. Org. Coat., 2004, 51(2), 118-124.
[16] Eddy, N.O., Ebenso, E.E., and Ibok, U.J., J. Appl. Electrochem., 2010, 40, 445-456.
[17] Wang, H.L., Liu, R.B., Xin, J, Media. Port. Electrochim. Acta, 2009, 27(5), 591-598.
[19] Karakus, M., Sahin, M., and Bilgic, S., Mater. Chem. Phys., 2005, 92(2-3), 565-575.
[20] Hosseini, S.M.A., and Azimi, A., Corros. Sci, 2009, 51(4), 728–732.
[21] Eddy, N.O., and Ebenso, E.E., Pig. Res. Technol., 2010, 39(2), 77-83.
[22] Hong, S., Chen, W., Zhang, Y., Luo, H.Q., Li, M., and Li, N.B., Corros. Sci., 2003, 66, 308–314.
[23] Hong, S., Chen, W., Luo, H.Q., and Li, N.B., Corros. Sci., 2012, 57, 270-276.
[24] Niamien, P.M., Essy, F.K., Trokourey, A., Yapi, A., Aka, H.K., and Diabate, D., Mater. Chem. Phys., 2012, 136 (1) 59-65.
[25] Khaled, K.F., Corros. Sci, 2010, 52(10) 3225–3234.
[26] Zarrouk, A., Warad, I., Hammouti., Dafali, A., Al-Deyab, S.S., and Benchat, N, Int. J. Electrochem. Sci., 2010, 5, 1516 – 1526.
[27] Guo, L., Zhu, S., Zhang, S., QiaoHe, Li, W,, Corros Sci,2014,87, 366-375
[28] Eddy, N.O., Ebenso, E.E., and Ibok U.J, J. Appl. Electrochem., 2010, 40, 445-456.
[29] Eddy, N.O., Ita, B.I., J. Mol. Mod, 2011, 17, 633-647.
[30] Sahin, M., Gece, F., and Bilgic, S., J. Appl. Electrochem., 2008, 38, 809-815.
[31] Yadav, D.K., Quraishi, M.A., and Maiti, B., Corros, Sci, 2011, 52(11), 3586-3598.
[32] Eddy, N.O., Mol. Simul., 2010, 35(5), 354-363.
[33] Khaled, K.F., Appl. Surf. Sci., 2010, 256(22), 6753-6763.
[34] Lukovits, I., Shaban, A., and Kalman, E., Russ. J. Electrochem, 2003, 39(2), 177-181.
[35] Hohenberg, P., and Kohn, W, Phys Rev., 1964, 136, B864.
[36] Frisch, M., et al, Gaussian 03 Revision B.05, 2003, Gaussian, Inc., Pittsburgh PA.
[37] Vera, L., Guzman, M., and Ortega-Luoni, P., J. Chil. Chem. Soc., 2006, 51(4), 1034-1039.
[38] Cardoso, S.P., Hollauer, E., Borges, L.E.P., and Gomes, J.A., J. Braz. Chem. Soc., 2006, 17(7), 1241-1249.
[39] Karelson, M., and Lobanov, V.S., Chem. Rev. 1996, 96(3), 1027-1043.
[40] Koopmans, T., Physica, 1934, 1(1-6), 104-113.
[41] Lesar, A., and Milosev, I., Chem. Phys. Let., 2009,483(4–6),198–203.
[42] Gece, G., and Bilgic, S., Corros Sci, 2009, 51(8), 1876–1878.
[43] Singh, A., Ansari, K.R., Kumar, A., Liu, W., Songsong, C., and Lin, Y., J. Alloys Compd., 2017, 72, 121-133.
[44] Lagren´ee, M., Mernari, B., Chaibi, N., Traisnel, M., Vezin, H., and Bentiss, F., Corros Sci, 2001, 43(5), 951–962.
[45] Quraishi, M.A., and Sardar, R., J. Appl. Electrochem., 2003, 33(12), 1163–1168.
[46] Khaled, K.F., Babić-Samardžija, K. and Hackerman, N., Electrochim. Acta, 2005, 50(12), 2515–2520.
[47] Obot, I.B., and Gasem, Z.M., Corros Sci , 2014, 83, 359-366.
[48] Obi-Egbedi N.O., and Obot I. B., Corros Sci, 2011, 53, 263-275.
[49] Saranya, J., Sounthari, P., Paranswari, K., and Chitra, S., Der Pharma Chemica, 2015, 8, 187-196.
[50] Parr, R.G., Donnelly, R.A., Levy, M., and Palke, W.E., J. Chem. Phys., 1978, 68(8), 3801–3807.
[51] Pearson, R. G., Proc. Natl. Acad. Sci., 1986, 83, 8440−8441.
[52] Pearson, R.G., J. Am. Chem. Soc., 1963, 85(22), 3533-3539.
[53] Pearson, R.G., Inorg. Chem. 1988, 27(4), 734–740.
[54] Michaelson, H.B., J. Appl. Phys., 1977, 48(11), 4729-4733.
[55] Kokalj, A., and Kovacevic, N., Chem. Phys. Lett.,2011, 507(1-3), 181-184.
[56] Lukovits, I., Kalman, E and F. Zucchi., Corrosion, 2001, 57(1),3–8.
[57] Parr, R.G., Szentpály, L.V., and Liu, S., J. Am. Chem. Soc.,1999, 121 (9), 1922-1924.
[58] Lukovits, I., Pálfi, K., Bakó, I., and Kálmán, E., corrosion. 1997, 53(12), 915-919.

Downloads

Published

2021-03-05

How to Cite

Inhibitory Effect of Some Methylxanthines on Copper Corrosion in 1M HNO3: Experimental, DFT and QSPR Studies. (2021). The Journal of Pure and Applied Chemistry Research, 10(1), 1-17. https://doi.org/10.21776/ub.jpacr.2021.010.01.548