The Biological Function Prediction of The 10-gingerol Compound of Ginger in Inhibiting Cyclooxygenase-2 Activity
Gabriella Chandrakirana Krisnamurti, Fatchiyah Fatchiyah
J. Pure App. Chem. Res. Vol 9, No 3 (2020), pp. 220-230
Submitted: June 03, 2020     Accepted: December 28, 2020     Published: December 28, 2020

Abstract



Anti-inflammatory agents inhibit prostaglandin synthesis by blocking cyclooxygenases (COXs). The compounds extracted from ginger, 10-gingerol and 10-shogaol can inhibit inflammation but the mechanism of inhibition remains unclear. Here we used molecular docking to predict the molecular interactions between COXs and the three inhibitors, acetaminophen (CID1983), 10-gingerol (CID168115) and 10-shogaol (CID6442612). By using that acetaminophen as a gold standard, the results demonstrated that acetaminophen, 10-gingerol, and 10-shogaol could bind catalytic domain and membrane binding domain of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). The 10-shogaol did not show significantly different binding energy to bind to COX-1 and COX-2. The 10-gingerol posed a stronger and more specific binding to the membrane-binding domain of COX-2 than acetaminophen and 10-shogaol. The specific binding of the 10-gingerol to COX-2 could prevent the binding of the natural substrate, arachidonic acid. The results provide useful information to improving activities of anti-inflammatory.


Keywords : 10-gingerol, 10-shogaol, Acetaminophen, Cyclooxygenase, Ginger, Inflammation


References


[1] Ricciotti, E., FitzGerald, G. A. Arterioscler. Thromb. Vasc. Biol. 2011, 31 (5), 986–1000.

[2] Arulsevan, P., Fard, M.T., Tan, W.S., Gothai, S., Fakurazi, S., Norhaizan, M.E., Kumar, S.S. Oxid. Med. Cell. Longev. 2016, 2016, 1–15.

[3] Setiawan, A., Yin, L., Auer, G., Czene, K., Smedby, K. E., Pawitan, Y. Sci. Rep. 2017, 7 (1), 1–5.

[4] Smyth, E. M., Grosser, T., Wang, M., Yu, Y., FitzGerald, G. A. J. Lipid Res. 2009, 50 (Supplement), S423–S428.

[5] Yoon, W. J., Ham, Y. M., Lee, W. J., Lee, N. H., Hyun, C. G. Turkish J. Biol. 2010, 34 (1), 25–34.

[6] Simmons, D. L., Botting, R.M., Hla, T. Pharmacological Reviews 2004, 56, pp 387–437.

[7] Raharjo, S. J., Mahdi, C., Nurdiana, N., Kikuchi, T., Fatchiyah, F. Adv. Bioinformatics 2014, 2014 (ID850628), 1–12.

[8] Zhu, X. T., Chen, L., Lin, J. H. Medicine 2018, 97, p e11649.

[9] Hinz, B., Cheremina, O., Brune, K. FASEB J. 2007, 22 (2), 383–390.

[10] Diener, H. C., Pfaffenrath, V., Pageler, L., Peil, H., Aicher, B. Cephalalgia 2005, 25 (10), 776–787.

(11) Hinz, B., Brune, K. Ann. Rheum. Dis. 2012, 71 (1), 20–25.

(12) Turtle, E. J., Dear, J. W., Webb, D. J. In British Journal of Clinical Pharmacology, 2013, Vol. 75, pp 1396–1405.

(13) Derry, C. J., Derry, S., Moore, R. A. Cochrane Database Syst. Rev. 2014, No. 12.

(14) Karimi, A., Majlesi, M., Rafieian-Kopaei, M. J. Nephropharmacology 2015, 4 (1), 27–30.

[15] Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A. Molecules 2010, 15 (6), 4324–4333.

[16] Koga, A. Y., Beltrame, F. L., Pereira, A. V. Brazilian J. Pharmacogn. 2016, 26 (3), 385–391.

[17] Dhanik, J., Arya, N., Nand, V., Jyotsna Dhanik, C. J. Pharmacogn. Phytochem. 2017, 6 (3), 174–184.

[18] Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A. BMC Complement. Altern. Med. 2015, 15 (1), 1–10.

[19] Samad, M. Bin, Mohsin, M. N. A. Bin, Razu, B. A., Hossain, M. T., Mahzabeen, S., Unnoor, N., Muna, I. A., Akhter, F., Kabir, A. U., Hannan, J. M. A. BMC Complement. Altern. Med. 2017, 17 (1), 1–13.

(20) Ali, A. M. A., El-Nour, M. E. M., Yagi, S. M. J. Genet. Eng. Biotechnol. 2018, 16 (2), 677–682.

[21] Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., Li, H. Bin. Foods 2019, 8 (6), 1–21.

[22] Semwal, R. B., Semwal, D. K., Combrinck, S., Viljoen, A. M. Phytochemistry 2015, 117, 554–568.

[23] van Breemen, R. B., Tao, Y., Li, W. Fitoterapia 2011, 82 (1), 38–43.

[24] Sharifi-Rad, M., Varoni, E. M., Salehi, B., Sharifi-Rad, J., Matthews, K. R., Ayatollahi, S. A., Kobarfard, F., Ibrahim, S. A., Mnayer, D., Zakaria, Z. A., Sharifi-Rad, M., Yousaf, Z., Iriti, M., Basile, A., Rigano, D. Molecules 2017, 22 (12), 1–20.

[25] Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., Korlakunta, J. N. J. Ethnopharmacol. 2010, 127 (2), 515–520.

[26] Nikolic, D., Habibi-Goudarzi, S., Corley, D. G., Gafner, S., Pezzuto, J. M., Van Breemen, R. B. In Analytical Chemistry, 2000, Vol. 72, pp 3853–3859.

[27] Lantz, R. C., Chen, G. J., Sarihan, M., Sólyom, A. M., Jolad, S. D., Timmermann, B. N. Phytomedicine 2007, 14 (2–3), 123–128.

[28] Ratih, D., Sari, T., Safitri, A., Cairns, J. R. K., Fatchiyah. J. Trop. Life Sci. 2020, 10 (1).

[29] Ferreira De Freitas, R., Schapira, M. Medchemcomm 2017, 8 (10), 1970–1981.

[30] Krisnamurti, G. C., Fatchiyah, F. Journal of Physics: Conference Series 2019, 1146, p 012004.

[31] Novoseletsky, V. N., Pyrkov, T. V., Efremov, R. G. SAR QSAR Environ. Res. 2010, 21 (1–2), 37–55.

[32] Panigrahi, S. K., Desiraju, G. R. Proteins 2007, 67 (1), 128–141.

[33] Septiadi, L., Thobibatus, N., Alfaruqi, S., Wahyudi, D., Kharisma, V. D. Bioinforma. Biomeducal Res. J. 2018, 1 (2), 33–39.

[34] Zarghi, A., Arfaei, S. In Iranian journal of pharmaceutical research : IJPR, 2011, 10, pp 655–683.

[35] Rahmani, A. H., Al Shabrmi, F. M., Aly, S. M. International Journal of Physiology, Pathophysiology and Pharmacology. 2014.

[36] Desai, S. J., Prickril, B., Rasooly, A. Nutr. Cancer 2018, 70 (3), 350–375.

[37] Karbasi, S. A., Modares-Mosadegh, M., Golestan, M. J. Pediatr. (Rio. J). 2010, 86 (3), 228–232.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.