NaFePO4 Cathode Prepared from The Caustic Fusion of A Mix Ilmenite-Hematite Followed by Cyclic Voltammetry for Na Insertion
DOI:
https://doi.org/10.21776/ub.jpacr.2020.009.02.527Keywords:
iron sand, ilmenite-hematite, NaFePO4, caustic fusion, cyclic voltammetry, Na insertion, cathode, sodium ion-batteryAbstract
Research to prepare NaFePO4 cathode material from iron sand was conducted. The iron sand consists of ilmenite FeTiO3 and hematite Fe2O3. A caustic fusion method used to precipitate iron as Fe(OH)3 and it increased Fe content up to 94.71 %. Phosphate precipitation successfully produced trigonal FePO4 and monoclinic FePO4 comply with ICSD#412736 and ICSD#281079. The prepared-FePO4 was then used as a precursor for Na insertion by applying cyclic voltammetry mode within 2.0 – 4.0 V with 0.05 mVs-1 of the scan rate. It produced orthorhombic olivine NaFePO4 and a secondary phase of orthorhombic Na0.7FePO4. Impedance analysis at 20 Hz – 5 MHz found that the material provided a semicircle at 100 Hz peak point, indicating electrode-bulk interface with a resistance value of 1735W, comparable to the electrical conductivity of 5.36 x 10-6 Scm-1. Even though the conductivity value is quite lower than NaFePO4 prepared from a commercial FePO4 that has been conducted in our previous research, however the electrical conductivity still reliable for cathode.
Downloads
References
[1] Wang, Y., Zhang, Y., Jiang, Z., Jiang, G., Zhao, Z., Wu, Q., Liu, Y., Xu, Q., Duan, A., Xu, C. Appl. Catal. B Environ. 2016, 185, 307–314.
[2] Li, D., Zhang, L., Chen, H., Ding, L.-X., Wang, S., Wang, H. Chem. Commun. 2015, 51, 16045–16048.
[3] Kim, H., Shakoor, R. A., Park, C., Lim, S. Y., Kim, J. S., Jo, Y. N., Cho, W., Miyasaka, K., Kahraman, R., Jung, Y., Choi, J. W. Adv. Funct. Mater. 2013, 23 (9).
[4] Ellis, B. ., Makahnouk, W. ., Makimura, Y., Toghill, K., Nazar, L. . Nat. Mater. 2007, 6 (10), 749–753.
[5] Kim, H., Park, I., Seo, D. ., Lee, S., Kim, S. ., Kwon, W. ., Park, Y. ., Kim, C. ., Jeon, S., Kang, K. J. Am. Chem. Soc. 2012, 134 (25), 19369–10372.
[6] Kim, J., Seo, D. H., Kim, H., Park, I., Yoo, J. K., Jung, S. K., Park, Y. U., Goddard, W. A., Kang, K. Energy Environ. Sci. 2015, 8 (2), 540–545.
[7] Lu, J., Chung, S. ., Nishimura, S.-I., Yamada, A. Chem. Mater. 2013, 25 (22), 4557–4565.
[8] Hasa, I., Hassoun, J., Sun, Y.-K., Scrosati, B. ChemPhysChem 2014, 15 (10), 2152–2155.
[9] Galceran, M., Saurel, D., Acebedo, B., Roddatis, V. ., Martin, E., Rojo, T., Cabanas, M. . Phys. Chem. Chem. Phys. 2014, No. 19, 8837–8842.
[10] Oh, S. M., Myung, S. T., Hassoun, J., Scrosati, B., Sun, Y. K. Electrochem. commun. 2012, 22 (1), 149–152.
[11] Rahmawati, F., Faiz, Z, Romadhona, D. A. N., Saraswati, T. E. and Lestari, W. W., IOP Conf.: Mater. Sci. Eng., 2020, 902, 012008.
[12] Bilalodin. Molekul 2010, 5 (2), 105–108.
[13] Setiawati, L. D. In Prosiding Seminar SEMIRATA FMIPA I, Universitas Lampung, Lampung, 2013, p .
[14] Rahmawati, F., Kusumaningtyas, A., Saraswati, T. E., Yahya, I., Lee, Y. AIP Conf. Proc. 2020, 2237 (1), 010003.
[15] Kim, D., Lee, E., Slater, M., Lu, W., Rood, S., and Johnson, C. S., Electrochem. Commun., 2012, 18, 66-69.
[16] Romadhona, D. A. Sintesis dan karakterisasi sodium iron phosphate dari pasir besi lokal secara elektrokimia (Electrochemical synthesis and characterization of sodium iron phosphate prepared from local iron sand), Universitas Sebelas Maret, Surakarta, 2019.
[17] Sun, A., Beck, F. R., Haynes, D., Poston, J. A., Narayanan, S. R., Kumta, P. N., Manivannan, A. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2012, 177 (20), 1729–1733.
[18] Kosova, N.V., Podugolnikov, V. R., Devyatkina, E. T., and Slobodyuk, A. B., Mater. Res. Bull., 2014, 60, 849–857.
[19] Tang, W., Song, X., Du, Y., Peng, C., Lin, M., Xi, S., Tian, B., Zheng, J., Wu, Y., Pan, F., Loh, K. P. J. Mater. Chem. A 2016, 4, 4882–4892.
[20] Casas-Cabanas, M., Roddatis, V. V, Saurel, D., Kubiak, P., Carretero-Gonzalez, J., Palomares, V., Serras, P., Tojo, T. J. Mater. Chem. 2012, 22, 17421.
[21] Moreau, P., Guyomard, D., Gaubicher, J., Boucher, F. Evolution (N. Y). 2013, 012 (2), 0–8.
[22] Moreau, P., Guyomard, D., Gaubicher, J., Boucher, F. Chem. Mater. 2010, 22 (14), 4126–4128.
[23] chem.libretext. Calculating atomic masses.
[24] MartÃn, P., López, M. L., Pico, C., Veiga, M. L. Mater. Chem. Phys. 2013, 140 (2–3), 535–542.
[25] Rahmawati, F., Prijamboedi, B., Soepriyanto, S., Ismunandar. ITB J. Sci. 2011, 43 A (1).
[26] Zhu, Y., Xu, Y., Liu, Y., Luo, C., Wang, C. Nanoscale 2013, 5 (2), 780–787.
[27] Pietrzak, T. K., Wewior, L., Garbarczyk, J. E., Wasiucionek, M., Gorzkowska, I., Nowinski, J. L., Gierlotka, S. Solid State Ionics 2011, 188 (1), 99–103.
[28] Wasiucionek, M., Winkowska, M., Grabski, J., Garbarczyk, J. E., Jozwiak, P., Bacewicz, R., Zalewski, W., Nowinski, J. . In 11th symposium on Fast Ionic Conductors, Grybow, Poland, 2008, p P.74.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).