Optical and Electrical Properties of Gold-Silver Nanoalloys Synthesized through Photochemical Reduction using Femtosecond Laser
Affi Nur Hidayah, Yuliati Herbani
J. Pure App. Chem. Res. Vol 9, No 3 (2020), pp. 179-186
Submitted: December 17, 2019     Accepted: November 05, 2020     Published: October 22, 2020


Cover Image

In this work we investigated the optical and electrical properties of Au-Ag nanoalloys in various volume ratios. The nanoparticles have been prepared from gold and silver ions reduced by direct irradiation femtosecond  laser. The samples were added into a quartz cuvette and  irradiated for 10 minutes. Each sample was observed the optical property where surface plasmon resonance (SPR) peak was existed. In addition, electrical conductivity of the colloids was derived from the measurement of  the correspond zeta potential by dynamic light scattering (DLS) method. The results showed that the SPR peak of Au-Ag nanoalloy were shifted almost linearly in between 409 nm for Ag and 530 nm for Au depending on their volume fraction. The conductivity measurement showed that Au0Ag100 (pure Ag) nanoparticles has the highest value and Au100Ag0 (pure Au) nanoparticles has the lowest value, and interestingly, Au-Ag nanoalloys have the values between Au0Ag100 and Au100Ag0. Briefly, this work revealed that both optical and electrical properties of Au-Ag nanoalloys can be easily tuned by regulating the volume fraction between the two elements.


Keywords: optical properties, electrical properties, Au-Ag nanoalloys, photochemical reduction, femtosecond laser

Keywords : photochemical reduction; laser femtosecond
Full Text: PDF


[1] Hyosung Choi, Seo Jin Ko, Yuri Choi, Piljae Joo, Taehyo Kim, Bo Ram Lee, Jae Woo Jung, Hee Joo Choi, Myoungsik Cha, Jong Ryul Jeong, In Wook Hwang, Myoung Hoon Song, Byeong Su Kim, Jin Young Kim, Nat. Photonics, 2013, 7(9), 732-738.

[2] G Upender, R Satyavathi, B Raju, K S Alee, D Rao and C Bansal, Chem. Phys. Lett., 2011, 511(4-6), 309–314.

[3] Lee Jaesang, Mahendra Shaily., Alvarez Pedro J.J, ACS Nano, 2010, 4(7), 3580-3590.

[4] Z Yang, J Ren, Z Zhang, X Chen, G Guan, L Qiu, Y Zhang, H Peng, Chem. Rev., 2015, 115(11), 5159-5223.

[5] Xi Feng Zhang, Zhi Guo Liu, Wei Shen and Sangiliyandi Gurunathan, Int. J. Mol. Sci., 2016, 17(9), 1534.

[6] Itina, T.E., J. Phys. Chem. C., 2011, 115(12), 5044-5048.

[7] Johnston, R. L., Metal Nanoparticles and Nanoalloys, in Frontier of Nanoscience, 2012, 3, Elsevier, Birmingham.

[8] Thakkar, K. N., Mhatre, S. S. and Parikh, R.Y., Nanomedicine, 2010, 6(2), 257 – 262.

[9] Herbani, Y., Nakamura, T. and Sato, S., J. Phys. Chem. C, 2011, 115(44), 21592-21598.

[10] Gopinath, V., Priyadarshini, S., Loke, M.F., Arunkumar, J., Marsili, E., Ali, D.,M., Velusamy, P. and Vadivelu, J., Arab. J. Chem., 2017, 10 (8), 1107-1117.

[11] Sonnichsen, C., Reinhard, B.M., Liphardt, J. and Alivisatos, A.P., Nat. Biotechnol., 2005, 23(6), 741-745.

[12] Link, S. and El-Sayed, M.A., J. Phys. Chem. B, 1999, 103(21), 4212-4217.

[13] Wang, A.Q., Chang, C.M. and Mou, C.Y., J. Phys. Chem B, 2005, 109(40), 18860-18867.

[14] Wang, A.Q., Liu, J.H., Lin, S.D., Lin, T.S. and Mou, C.Y., J. Catal., 2005, 233(1), 186-197.

[15] Jha, R. and Sharma, A.K., Opt. Lett., 2009, 34(6),749-751.

[16] Cha, S.K., Mun, J.H., Chang, T., Kimia, S.Y., Kim, J.Y., Jin, H.M., Lee, J.Y., Shin, J., Kim, K.H. and Kim, S.O., ACS Nano, 2015, 9(5), 5536-5543.

[17] Hardison, D.R., Cooper, W.J., Mezyk, S.P. and Bartels, D.M., Rad. Phys. Chem., 2002, 65(4-5), 309-315.

[18] Nakamura, T., Herbani, Y., Ursesc, Y., Banici, R., Dabu R.V. and Sato, S., AIP Advances, 2013, 3(8), 082101.

[19] Pommeret, S., Gobert, F., Mostafavi, M, Lampre, I. and Mialocq, J. C., J. Phys. Chem. A, 2001, 105(51), 11400-11406.

[20] Meader, V.K., John, M.G., Frias Batista, L.M., Ahsan, S. and Tibbetts, K.M., Molecules, 2018, 23(3), 532.

[21] Nakamura, T., Herbani, Y. and Sato, S., J. Nanoparticle Res., 2012, 14(4), 785.

[22] Mathur, D., Rajgara, F.A., Dharmadhikari, A.K. and Dharmadikari, J.A., Phys. Rev. A, 2008, 78(2), 023414.

[23] Herbani, Y.­, Synthesis of Noble Metal Nanoparticles in Intense Laser Field, 2011, Thesis, Department of Material Science, Graduate School of Engineering, Tohoku University, Japan.

[24] Hidayah, A.N., Triyono, D., Herbani, Y., Isnaeni, I. and Suliyanti, M.M., IOP Conf. Series: J. Phys., 2019, 1245, 012064.

[25] Gaudry, M., Lerme´, J., Cottancin, E., Pellarin, M., Vialle, J.-L., Broyer, M., Pre´vel, B., Treilleux, M. and Me´linon, P., Phys. Rev. B, 2001, 64, 085407.

[26] Cisneros, G. and Helman, J.S., Solid State Commun., 1973, 13(9), 1385-1387.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.