Starch Based Biocomposite from Sago (Metroxylon sagu) with Nano-Chitosan reinforcement : Mechanical and Thermal Characteristics
Athoillah Azadi, Sugeng Supriyadi, Heny Herawati
J. Pure App. Chem. Res. Vol 9, No 2 (2020), pp. 98-107
Submitted: November 19, 2019     Accepted: August 31, 2020     Published: August 31, 2020

Abstract


Cover Image

A biocomposite system incorporating sago starch and nano-chitosan (SS/NCS) were developed by casting and solvent evaporation method. The purpose of this experiment for characterization of the film based on sago starch (SS) with a variation of the addition of nano-chitosan (0, 2, 4, 6 and 8% by weight starch) and analyze its effect on mechanical properties, thermal properties, and morphological characteristics of mixed film (SS / NCS). Possible intermolecular interactions between SS and NCS were confirmed by Fourier-transform infrared spectroscopy (FTIR) and the reduction of crystallinity in XRD. The experimental data showed that the incorporation of nano-chitosan resulted in an increase in film solubility, tensile strength and elongation at break and a decrease in Young’s modulus. Elongation at break of the (SS/NCS) films increased with increasing of nano-chitosan concentration. The water vapor permeability (WVP) of (SS/NCS) films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. Based on thermogravimetric analysis (TGA), the percentage of nano-chitosan content in starch-based films can increase thermal stability.. Scanning electron microscope (SEM) shows the surface morphology and interface of NCS/SS composite films and suggests sufficient homogenization of starch and chitosan in biodegradable composite films.


Keywords : sago starch, nano-chitosan, starch-based film, biocomposite
Full Text: PDF


References


[1] Forssell, P., et al., Carbohydr. Polym., 2002, 47(2),125-129.

[2] Yu, L., Dean, K., and L. Li, Prog. Polym. Sci, 2006, 31(6), 576-602.

[3] Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., and Qin C, Int J Biol Macromol, 2019, 135, 344-352.

[4] Raquez, J.-M., Nabar, Y., Srinivasan, M., Shin, B.Y., Narayan, R., and Dubois, P, Carbohydr. Polym.,. 2008, 74(2), 159-169.

[5] Rindlava, Å., Hulleman, S.H., and Gatenholma, P., Carbohydr. Polym., 1997, 34(1-2), 25-30.

[6] Martin, Schwach, E., Avrous, L., and Couturier, Y., Starch-Starke., 2001, 53(8), 372-380.

[7] Carmona, V.B., de Campos, A., Marconcini, J.M., and Mattoso, L.H.C., J. Therm. Anal. Calorim., 2014, 115(1), 153-160.

[8] Corradini, E., Souto de Medeiros, E., Carvalho, A.J., Curvelo, A.A., and Mattoso, L.H, J. Appl Polym. Sci, 2006, 101(6), 4133-4139.

[9] Rosa, M.F., Chiou, B.S., Medeiros, E.S., Wood, D.F., Williams, T.G., Mattoso, L.H., Orts, .J., and Imam, S.H.,Bioresour. Technol, 2009, 100(21), 5196-5202.

[10] Aini, N.N.M., Biodegradable Biocomposite Starch Based Films Blended with Chitosan and Gelatin. 2010, UMP.

[11] Bourtoom, T., and Chinnan, M.S., LWT - Food Science and Technology, 2008, 41(9), 1633-1641.

[12] Divakar, D.D., Jastaniyah, N.T., Altamimi, H.G., Alnakhli, Y.O., Alkheraif, A.A., and Haleem, S. Int. J. Biol. Macromol, 2018, 108, 790-797.

[13] Naskar, S., Sharma, S., and Kuotsu, K, J. Drug Deliv. Sci. Technol, 2019, 49, 66-81.

[14] Lopez, O., Garcia, M.A., Villar, M.A., Gentili, A., Rodriguez, M.S., and Albertengo, L., LWT-Food Science and Technology, 2014, 57(1), 106-115.

[15] Pelissari, F.M., Grossmann, M.V., Yamashita, F., and Pineda, E.A.G, J. Agric. Food Chem, 2009, 57(16), 7499-7504.

[16] Tuhin, M.O., Rahman, N., Haque, M.E., Khan, R.A., Dafader, N.C., Islam, R., Nurnabi, M., and Tonny, W, Radiat. Phys. Chem, 2012, 81(10), 1659-1668.

[17] Xu, Y., Kim, K.M., Hanna, M.A., and Nag, D, Ind. Crops. Prod, 2005, 21(2), 185-192.

[18] Leceta, I., Guerrero, P., and De La Caba, K., Carbohydr Polym, 2013, 93(1), 339-346.

[19] Park, S.Y., Marsh, K.S., and Rhim, J.W, J. Food. Sci, 2002, 67(1), 194-197.

[20] Srinivasa, P.C., Ramesh, M.N., and Tharanathan, R.N., Food. Hydrocoll, 2007, 21(7), 1113-1122.

[21] Kerch, G., and Korkhov, V., Eur. Food Res. Technol, 2011, 232(1), 17-22.

[22] Leceta, I., Penalba, M., Arana, P., Guerrero, P., and De La Caba, K., Eur. Polym. J, 2015. 66, 170-179.

[23] Ibrahim, M., Mahmoud, A.A., Osman, O., Refaat, A., and El-Sayed, E.S.M., SPECTROCHIM ACTA A, 2010, 77(4), 802-806.

[24] Mathew, S. and Abraham, T.E, Food. Hydrocoll, 2008, 22(5), 826-835.

[25] Hulleman, S.H.D., Kalisvaart, M.G., Janssen, F.H.P., Feil, H., and Vliegenthart, J.F.G, Carbohydr Polym, 1999, 39(4), 351-360.

[26] Shi, R., Liu, Q., Ding, T., Han, Y., Zhang, L., Chen, D., and Tian, W., J. Appl. Polym. Sci, 2007, 103(1), 574-586.

[27] Corradini, E., de Morais, L.C., Demarquette, N.R., Agnelli, J.A., and Mattoso, L.H., Polym. Adv. Technol, 2007, 18(10), 861-867.

[28] Yang, J.H.,Yu, J.G., and Ma, X.F., Carbohydr. Polym, 2006, 66(1), 110-116.

[29] Bader, H.G., and Göritz, D, Starch-Starke, 1994, 46(11), 435-439.

[30] Nevoralová, M., Koutny, M., Ujcic, A., Horak, P., Kredatusova, J., Sera, J., Ruzek, L., Ruzkova, M., Krejcikova, S., Slouf, M., and Krulis, Z, Polym. Degrad. Stabil, 2019, 170, 108995.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.