Green Microwave-assisted Synthesis of ZnO-Ag Nanocomposite using Clove Oil (Syzygium aromaticum L.) and Its Bioactivity against Staphylococcus aureus
Elvina Dhiaul Iftitah, Rizki Wahyu Aji Wibowo, Masruroh Masruroh, Khoirun Nisyak
J. Pure App. Chem. Res. Vol 9, No 2 (2020), pp. 82-90
Submitted: November 15, 2019     Accepted: August 31, 2020     Published: August 31, 2020

Abstract


Cover Image

Microwave-assisted synthesis of zinc oxide-silver (ZnO-Ag) nanocomposite using clove (Syzygium aromaticum L.) oil has been investigated. Variation of solvents and irradiation time of microwave was studied. The product characterization was carried out using XRD, FT-IR, and SEM-EDS. The XRD analysis indicates ZnO-Ag nanocomposite has a polycrystalline structure. The ZnO peak was detected at = 31.99; 34.58 and 68.05, whereas the Ag peak was detected at  = 38.36 and 44.49. The increasing of irradiation time reduces the crystallite size, and generally has size range between 9 and 12 nm. SEM-EDS confirmed the existence of the ZnO-Ag nanocomposite with percentage of Zn (46.89%), O (29.72%) and Ag (23.39%). Moreover, antibacterial evaluation on Staphylococcus aureus give the inhibition zone in 13.3 mm. This result slightly gives better activity than the reference.


Keywords : Clove (Syzygium aromaticum L.), bioreductor, ZnO-Ag nanocomposite, microwave, bioactivity
Full Text: PDF


References


[1] Sharma, S. K., Gajanan S. Ghodake, Deuk Young Kim, Dae-Young Kim, and O.P. Thakur, Curr. Appl. Phys., 2018, 18, 377-383.

[2] Gorban. O., Ilenko, I., Mitina, N., Gorban, S., Zichenko, A., and Konstantinova, T, IOP Conf. Series: Mater. Sci. Eng., 2017, 213, 1-7.

[3] Chung, I.M., Park, I., Seung-Hyun, K., Thiruvengadam, M., and Rajakumar, G, Nanoscale Res. Lett., 2016, 11(1), 40.

[4] Saravanan, R., Karthikeyan, N., Gupta, V.K., Thirumal, E., Thangadurai, P., Narayanan, V., and Stephen, A, Mater. Sci. Eng. C, 2013, 33, 2235-2244.

[5] Zhang J., International Conference on Electronics and Optoelectronics (ICEOE 2011), 2011, V3-94 – V3-98.

[6] Archer, N.K., Mazaitis, M.J., Costerton, J.W., Leid, J.G., Powers, M.E and Shirtliff, M.E, Virulence, 2011, 2(5). 445-459.

[7] Senthilkumar, N., Ganapathy, M., Arulraja, A., Meena, M., Vimalan, M., and Potheher, I.V, J. Alloy Comp., 750, 171 – 181.

[8] Jafari, A., Ghane, M., and Arastoo, S., Afr. J. Microbio. Res., 2011, 5(30), 5465-5473.

[9] Abd Kelkawi, A.H., Kajani, A.A., and Bordbar, A.K., IET Nanobiotechnol., 2016, 11(4), 370 – 376.

[10] Mohan, A.C., and Renjanadevi, B., J. Mater. Sci. Eng., 2016, 5(6), 1000291.

[11] Khan, M., Wei, C., Chen, M., Tao, J., Huang, N., Qi, Z., and Li, L., J. Alloy Comp, 2014, 612, 306 – 314.

[12] Jadhav, J., and Biswas, S., Appl. Surf. Sci., 2018, 456, 49 – 58.

[13] Aziz, W.J., and Jassim, N.Z., MJS, 2018, 29(1), 204–207.

[14] Yadav, L.R., Pratibha, S., Manjunath, K., Shivanna, M., Ramakrishnappa, T.N., Dhananjaya, and G. Nagarajua, Journal of Science: Advanced Materials and Devices, 2019, 4(3), 425 – 431.

[15] Azizi, S., Mohamad, R., Rahim R.A., Moghaddam, A.B., Moniri, M., Ariff, A., Saad, W.Z, and Namvab, F., Appl. Surf. Sci., 2016, 384, 517 – 524.

[16] Kyomuhimbo, H.D., Michira, I.N., Mwaura, F.B., Derese, S., Feleni, U., and Iwuoha, E.I., SN Applied Sciences, 2019, 1(7), 681.

[17] Jayanudin, Jurnal Teknik Kimia Indonesia, 2016, 10(1), 37 – 42

[18] Phindile B. Khoza, Makwena J. Moloto, and Lucky M. Sikhwivhilu, J. Nanotechnol., 2012, 1-6.

[19] Asakuma, Y., Matsumura, S., and Saptoro, A., Chem. Eng Processing: Process Intensification, 2018, 132, 11 – 15.

[20] Ahmadi, K.G.S and Mushollaeni, W., Jurnal Teknologi Pertanian, 2007, 8(2), 71 – 79.

[21] Jafari, A., Ghane, M., and Arastoo, S., Afr. J. Microbiol, 2012 5(30), 5465 – 5473.

[22] Morsy, S.M., Int. J. Microbiol. App. Sci, 2014, 3(5), 237 – 260.

[23] Hasnidawani, J.N., Azlina, H.N., Norita, N., Bonnia, N.N., Ratim, S., and Ali, E.S. Procedia Chem, 2016, 19, 211 – 216.

[24] Wang, M., Zhou, Y., Zhang, Y., Hahn, S.H., and Kim, E.J., CrystEngComm, 2011, 13(20), 6024 – 6026.

[25] Zobel, M., Chatterjee, H., Matveeva, G., Kolb, U., and Neder, R.B., J. Nanopart. Res., 2015, 17(5), 1 – 20.

[26] Sharma, N., Kumar, J., Thakur, S., Sharma, S., Shrivastava, V., Drug.Invent. Today, 2013, 5, 50 – 54.

[27] Siva Vijayakumar, T., Karthikeyeni, S., Vasanth, S., Ganesh, A., Bupesh, G., Ramesh, R., Manimegalai, M., and Subramanian, P., Int.J. Nanosci, 2013, 1 – 7.

[28] Barreto, G.P., Morales, G., and Quintanilla, M.LL., J. Mater., 2013, 1 – 11.

[29] Ghosh Chaudhuri, R., and Paria, S., Chem. Rev., 2012, 112(4), 2373–2433.

[30] Ayesha Naved Ul Haq, Akhtar Nadhman, Ikram Ullah, Ghulam Mustafa, Masoom Yashinzai, and Imran Khan, J. Nanomater., 2017, 1 – 14.

[31] Krause, K.M., Serio, A.W., Kane, T.R., and Connolly, L.E., Cold Spring Harb Perspect Med, 2016, 6(6), 1 – 18.

[32] Masruri, M., Pangestin, D. N., Ulfa, S. M., Riyanto, S., Srihardyastutie, A. and Rahman, M. F., IOP Conf. Ser.: Mater Sci. Eng., 2018, 299, 012072.

[33] Azkiya, N. I., Masruri, M. and Ulfa, S. M., IOP Conf. Ser.: Mater. Sci. Eng., 2018, 299, 012070

[34] Hariani, P. L., Desnelli, D., Fatma, F., Rizki, I. P. and Salni, S., J. Pure App. Chem. Res., 2018, 7(2), 122.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.