Garcinia Mangostana Peel Extract as Sustainable Fuel Source on Ceria Synthesis under Hydrothermal Condition
SALPRIMA YUDHA S, Morina Adfa, Aswin Falahudin, Deni Agus Triawan, Liana Wahyuni, Meka Saima Perdani
J. Pure App. Chem. Res. Vol 8, No 3 (2019), pp. 255-261
Submitted: September 02, 2019     Accepted: December 30, 2019     Published: December 30, 2019

Abstract


Cover Image

Cerium (IV) oxide or ceria (CeO2) was fabricated by heating an aqueous extract of Garcinia mangostana and cerium (III) nitrate in hydrothermal autoclave reactor at 200 °C for 3 hours, followed by calcination at 600 °C for 5 hours. The powder X-ray diffraction (XRD) pattern of the precipitate from cerium(III) nitrate under hydrothermal reaction conditions shows no clear XRD peaks, indicating its amorphous nature. In contrast, the products from the calcinated samples exhibit XRD peaks, which correspond to cubic fluorite structure with an average crystal size of 7.55 nm. The elemental mapping using the energy-dispersive X-ray (EDX) analysis reveals the main elements present were cerium and oxygen, with minor impurities in low amounts. The presence of Garcinia mangostana extract is predicted to be the key component and fuel source to obtain CeO2 particles with narrow crystal size.


Keywords : ceria, CeO2, fuel source, Garcinia mangostana, hydrothermal
Full Text: PDF


References


[1] Hirano, M. and Kato, E., J. Am. Ceram. Soc. 1996, 79(31), 777 – 780.

[2] Sharma, J.K.; Srivastava, P.; Ameen, S.; Akhtar, M.S.; Sengupta,S.K.; and Singh, G., Mater. Res. Bull., 2017, 91 (1), 98 – 107.

[3] Sangsefidi, F., Nejati, M., Verdi, J., and Niasari, M., J. Clean. Prod., 2017, 156, 741-749.

[4] Arumugam A.; Karthikeyan, C.; Hameed, A.S.H.; Gopinath, K.; Gowri, S.; and Karthika, V., Mater. Sci. Eng. C: Matter Biol. Appl. 2015, 49, 408 – 415.

[5] Priya, G.S., Kanneganti, A, Kumar, K.A., Rao, K.V., and Bykkam, S., Int. J. Sci. Res. Publ., 2014., 4(6) 199-224.

[6] Bhagit, A.A., Mhatre, S.V., and Yadav, R.P., MGM Journal of Medical Sciences, 2016, 3(4), 161-166.

[7] Kargar H, Ghasemi F, Darroudi M., Ceram. Int., 2015, 41(1), 1589–1594.

[8] Darroudi, M., Sarani, M., Oskuee, R.K., Zak, A.K., Hosseini, H.A., & Gholami, L., Ceram. Int., 2014, 40(1), 2041 – 2045.

[9] Alpaslan, E., Yazici, H., Golshan, N.H., Ziemer, K.S., & Webster, T.J., ACS Biomater Sci. Eng. 2015, 1(11) 1096 – 1103.

[10] Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, S., & Jan, T., Int. J. Nanomedicine., 2016, 11, 5015–5025.

[11] Maqbool, Q., RSC Adv., 2017, 7, 56575 – 56585.

[12] Elahi, B., Mirzaee,M., Darroudi, M., Oskuee, R.K., Sadri,K., Amiri, M.S., Ceram. Int., 2019, 45(4), 4790-4797.

[13] Nadjia, L., Abdelkader, E., Naceur, B., Ahmed, B., J. Rare Earth., 2018, 36(6), 575 – 587.

[14] Nourmohammadi, E., Oskuee, R.K., Hasanzadeh, L., Mohajeri, M., Hashemzadehd, A., Rezayie, M., Darroudie, M., Ceram. Int. 2018, 44(16), 19570-19575.

[15] Kumar, E., Selvarajan, P., Muthuraj, D., Mater. Res., 2013, 16(2), 269 – 276.

[16] Phoka, S., Laokul, P., Swatsitang, E., Promarak, V., Seraphin, S., Maensiri, S., Mater. Chem. Phys. 2009, 115(1), 423–428.

[17] Kumar, S., Ojha, A.K., RSC Adv., 2016, 6(11), 8651–8660.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.