In vitro Clot Lysis Activity of Phenolic Compound Degrading Product From Lignin Sugarcane Baggase Using Ochrobactrum sp.
Arie Srihardyastuti, Moh Farid Rahman, Tri Ardyati, Anna Roosdiana, Indah Prihartini
J. Pure App. Chem. Res. Vol 9, No 3 (2020), pp. 194-200
Submitted: July 12, 2019     Accepted: December 20, 2020     Published: October 07, 2020


Cover Image

Sugarcane bagasse (Saccharum officinarum L) is a readily available waste product of cane sugar processing. The content of lignocelluloses in sugarcane bagasse is approximately 52.7% cellulose, 20% hemicelluloses, and 24.2% lignin. Lignin can be degraded enzymatically by using microorganisms, such as Ochrobactrum sp. Monomer derived from lignin degradation using these bacteria in the optimum condition of sugarcane fermentation (pH 6, temperature 40 °C, for 5 days of incubation, the concentrations of starter 29%) by GC-MS yielded phenolic compounds such as 4-methyl-2, 6-di-tert-butylphenol; 2,6-di-tert-butylquinone; phenol, and p-hydroxybenzaldehide. The thrombolytic activity of these lignin monomers can be tested in-vitro by measuring the ability of clot lysis. Lignin did not have in-vitro clot lysis activity, whereas the lignin monomers in filtrat of fermented sugarcane bagasse have an in-vitro clot lysis activity, although its capacity is not as high as streptokinase.

Keywords : degradation, lignin, Ochrobactrum sp., in-vitro clot lysis activity
Full Text: PDF


[1] Restuti, D., Michaelowa, A. Energy Policy, 2007, 35 (7), 3952–3966.

[2] Sari, K. E., and Meidiana, C. IOP Conf. Ser.: Earth Environ. Sci., 2019, 314, 012028.

[3] Alfian, M. M., Amin, M., Sholihul, H. M., and Aziz, M., J. Appl. Eng. Sci. 2020, 18 (2), 262–266.

[4] Pradana, Y. S., Hartono, M., Prasakti, L., and Budiman, A. Energy Procedia 2019, 158, 431–439.

[5] Navalta, C. J. L. G., Banaag, K. G. C., Von Adrian, O. R., Go, A. W., Cabatingan, L. K., and Ju, Y.-H., Renew. Energy 2020, 147, 1941–1958.

[6] Setter, C., Costa, K. L. S., de Oliveira, T. J. P., and Mendes, R. F., Fuel Process. Technol. 2020, 210, 106561.

[7] Candido, R., Godoy, G., and Goncalves, A. R., Carbohydr. Polym. 2017, 167, 280–289.

[8] Ferreira, F., Mariano, M., Rabelo, S., Gouveia, R., and Lona, L., Appl. Surf. Sci. 2018, 436, 1113–1122.

[9] Moubarik, A., Grimi, N., Boussetta, N., and Pizzi, A., Ind. Crops Prod. 2013, 45, 296–302.

[10] Xu, Z., Qin, L., Cai, M., Hua, W., and Jin, M., Environ. Sci. Pollut. Res. 2018, 25 (14), 14171–14181.

[11] Zhang, W., You, Y., Lei, F., Li, P., and Jiang, J., Bioresour. Technol. 2018, 265, 387–393.

[12] Shirkavand, E., Baroutian, S., Gapes, D. J., and Young, B. R., Renew. Sust. Energy Rev. 2016, 54, 217–234.

[13] Guerrero, E. B., Arneodo, J., Campanha, R. B., de Oliveira, P. A., Labate, M. T. V., Cataldi, T. R., Campos, E., Cataldi, A., Labate, C. A., and Rodrigues, C. M., PLoS One 2015, 10 (8), e0136573.

[14] Kumar, G., Sivagurunathan, P., Sen, B., Mudhoo, A., Davila-Vazquez, G., Wang, G., and Kim, S.-H., Inter. Biodeterior. Biodegradation 2017, 119, 225–238.

[15] Rico-García, D., Ruiz-Rubio, L., Pérez-Alvarez, L., Hernández-Olmos, S. L., Guerrero-Ramírez, G. L., and Vilas-Vilela, J. L., Polymers 2020, 12 (1), 81.

[16] Zhu, Y., Huang, J., Wang, K., Wang, B., Sun, S., Lin, X., Song, L., Wu, A., and Li, H., Polymers 2020, 12 (1), 187.

[17] Hasanah, U., Setiaji, B., Triyono, T., and Anwar, C., J. Pure App. Chem. Res. 2012, 1 (1), 26.

[18] Yedro, F. M., García-Serna, J., Cantero, D. A., Sobrón, F., and Cocero, M. J., RSC Adv. 2014, 4 (57), 30332–30339.

[19] O’Neill, E., Kawam, A., Van Ry, D., and Hinrichs, R., Atmospheric Chem. Phys. 2014, 14 (1), 47–60.

[20] Xu, C., Zhang, J., Zhang, Y., Guo, Y., Xu, H., Liang, C., Wang, Z., and Xu, J., Int. J. Biol. Macromol. 2019, 141, 484–492.

[21] Wen, J.-L., Sun, S.-L., Yuan, T.-Q., and Sun, R.-C., Green Chem. 2015, 17 (3), 1589–1596.

[22] Granja‐Travez, R. S., Wilkinson, R. C., Persinoti, G. F., Squina, F. M., Fülöp, V., and Bugg, T. D., FEBS J. 2018, 285 (9), 1684–1700.

[23] Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., Ralph, J., Tamminen, T., Felby, C., and Kruus, K., Bioresour. Technol. 2019, 280, 303–312.

[24] Francis, C., and Marder, V., Annu. Rev. Med. 1986, 37 (1), 187–204.

[25] Coull, B. M., Williams, L. S., Goldstein, L. B., Meschia, J. F., Heitzman, D., Chaturvedi, S., Johnston, K. C., Starkman, S., Morgenstern, L. B., and Wilterdink, J. L., Stroke 2002, 33 (7), 1934–1942.

[26] Meade, T., Ruddock, V., Stirling, Y., Chakrabarti, R., and Miller, G., Lancet 1993, 342 (8879), 1076–1079.

[27] Bridge, K. I., Philippou, H., and Ariëns, R. A., J. Thromb. Haemos. 2014, 112 (11), 901–908.

[28] Luceri, C., Giannini, L., Lodovici, M., Antonucci, E., Abbate, R., Masini, E., and Dolara, P., Br. J. Nutr. 2007, 97 (3), 458–463.

[29] Zaman, R., Parvez, M., Jakaria, M., Sayeed, M. A., and Islam, M., Res. J. Med. Plant 2015, 9 (3), 135–140.

[30] Patel, D., Desai, S., Desai, A., Dave, D., and Meshram, D., J. Pharmacog. Phytochem. 2019, 8 (3), 3916–3918.

[31] Yoon, S.-J., Yu, M., Sim, G.-S., Kwon, S.-T., Hwang, J.-K., Shin, J.-K., Yeo, I.-H., and Pyun, Y.-R., J. Microbiol. Biotechn. 2002, 12 (4), 649–656.

[32] Mine, Y., Wong, A. H. K., and Jiang, B., Food Res. Int. 2005, 38 (3), 243–250.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.