Study of Antocyanins Activity from Purple Sweet Potato for Reducing Apoptotic Cells Expression of The Cerebellum On Ischemic Stroke Rats
Abstract
This study aims to determine anthocyanin antioxidant performance with a dose of 2 cc/day based on the expression of apoptotic cells on ischemic stroke rats cerebellum. Research was conducted using ischemic stroke rats (Rattus norvegicus) that prepared by ligated for 3 h on the Common Carotid Artery (CCA) and External Carotid Artery (ECA) followed by reperfusion that commonly known as MCAO (Middle Cerebral Artery Occlusion). The anthocyanin extract was characterized by LC-MS and its IC50 was measured by DPPH method. The rats were divided into five groups 1) negative control; 2) reperfusion 1 h; 3) reperfusion 72 h; 4) reperfusion 24 h, with anthocyanin therapy; 5) reperfusion 72 h, with anthocyanin therapy. The results of LC-MS showed that anthocyanin from purple sweet potato extracts contained Petunidin-3,5-O-diglucoside (Pt-DG) with an IC50 value of 22.16 μg/mL, categorized as very strong antioxidant. The results showed that apoptotic cells expression of cerebellum decreased significantly (p<0.01) after 72 h reperfusion with anthocyanins therapy until 2.42%. The current work proved that anthocyanin extract effectively suppresses the apoptotic cell’s expression of the cerebellum on stroke ischemic rats.
References
[1] Jie, L.; Xiao-ding, L.; Yun, Z.; Zheng-Dong, Z.; Zhi-Ya, Q.; Meng, L.; Shao-hua, Z.; Shuo, L.; Meng, W.; Lu, Q. Food Chem. 2013, 136 (3–4), 1429–1434.
[2] Hwang, Y. P.; Choi, J. H.; Choi, J. M.; Chung, Y. C.; Jeong, H. G. Food Chem. Toxicol. 2011, 49 (9), 2081–2089.
[3] Bhat, A. H.; Dar, K. B.; Anees, S.; Zargar, M. A.; Masood, A.; Sofi, M. A.; Ganie, S. A. Biomed. Pharmacother. 2015, 74, 101–110.
[4] Shin, W. H.; Park, S. J.; Kim, E. J. Life Sci. 2006, 79 (2), 130–137.
[5] Büttner, F.; Cordes, C.; Gerlach, F.; Heimann, A.; Alessandri, B.; Luxemburger, U.; Türeci, Ö.; Hankeln, T.; Kempski, O.; Burmester, T. Brain Res. 2009, 1252, 1–14.
[6] Kakoli, B. Protease in Apoptosis: Pathways, Protocols and Translational Advances, 1st ed.; Kakoli, B., Ed.; Springer International Publishing Switzerland: London, 2015.
[7] Nur Rohma, A.; Mahdi, C.; Aulanni’am, A. J. Pure Appl. Chem. Res. 2017, 6 (2), 160–165.
[8] Kurniawati, M.; Mahdi, C.; Aulanni’am, A. J. Pure Appl. Chem. Res. 2014, 3 (1), 1–6.
[9] Lailiyah, I.; Prasetyawan, S.; Aulanni’am, A. J. Pure Appl. Chem. Res. 2017, 6 (2), 96–100.
[10] Ahmad, A.; Moshahid Khan, M.; Javed, H.; Raza, S. S.; Ishrat, T.; Badruzzaman Khan, M.; Safhi, M. M.; Islam, F. Mol. Cell. Biochem. 2012, 367 (1–2), 215–225.
[11] Palencia, G.; Medrano, J. Á. N.; Ortiz-Plata, A.; Farfán, D. J.; Sotelo, J.; Sánchez, A.; Trejo-Solís, C. J. Neurol. Sci. 2015, 351 (1–2), 78–87.
[12] Thal, S. E.; Zhu, C.; Thal, S. C.; Blomgren, K.; Plesnila, N. Neurosci. Lett. 2011, 499 (1), 1–3.
[13] Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. J Agric Food Chem. 2009, 57 (5), 1768–1774.
[14] In situ Apoptosis Detection Kit (ab206386) References http://www.abcam.com/in-situ-apoptosis-detection-kit-ab206386-references.html (accessed Jul 24, 2017).
[15] Jun, M. H.; Yu, J.; Fong, X.; Wan, C. .; Yang, C. T.; Ho. J. Food Sci. Inst. Technol. 2003, 68, 211–212.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.