Antibacterial Potential of SrBi2Ta2O9 Synthesized via Molten Salt Method

Authors

  • Nuril Lailatul Izzah Department of Chemistry, Faculty Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Amalia Savira Department of Chemistry, Faculty Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Anik Ma’unatin Department of Chemistry, Faculty Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Widya Nur Safitri Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, East Java, Indonesia
  • Arie Hardian Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Jenderal Sudirman, Cimahi, 40531, Indonesia
  • Anton Prasetyo Department of Chemistry, Faculty Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang http://orcid.org/0000-0003-1575-8634

DOI:

https://doi.org/10.21776/

Keywords:

SrBi2Ta2O9, molten salt synthesis, photocatalyst, antibacterial

Abstract

One of the interesting properties of Aurivillius compounds is photocatalysts; therefore, they have the potential to be used as antibacterials. However, the study of the antibacterial properties of Aurivillius compounds is still very limited, therefore it’s important to conduct research on it’s properties. Our research aims to study the photocatalytic activity of SrBi2Ta2O9 compounds synthesized by molten salt method (using NaCl/KCl salt) as antibacterial. The diffractogram of the sample shows that the SrBi2Ta2O9 was successfully synthesized, but an impurity phase was formed as Bi2O3, Ta2O5, and SrBi2.83Ta5O15. The SEM images show that the morphological shape obtained is plate-like, which still has agglomeration with particle size distribution at range 20-80 μm. Plot tauc shows that the band gap energy of SrBi2Ta2O9 compounds is 2.8 and 3.06 eV, respectively. The antibacterial activity test results showed that the SrBi2Ta2O9 compound can inhibit staphylococcus bacterial growth under and without light radiation. It indicates that there are two possible mechanisms related to the inhibition of bacterial growth i.e: (a) photocatalysis, and (b) toxicity properties.

Downloads

Download data is not yet available.

References

[1] Pigłowski M., Int J Environ Res Public Health., 2019, 16(3), 477.

[2] Quek, J. A., Sin, J. C., Lam, S. M., Mohamed, A. R., & Zeng, H., J Mater Sci: Mater Electron, 2020, 31, 1144–1158.

[3] Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M.M., and Dilbaghi, N., J. Nanosci. Nanotechnol, 2014, 14(2), 1838–1858,

[4] Aurivillius, B. Arkiv For Kemi, 1949, I, 54, 463-480.

[5] Smolenskii, G.A., Isupov, V.A., and Agranovskaya, A.I., Fiv. Tverd. Tela, 1959, 1, 169.

[6] Wang, Y., Zhang, X., Zhang, C., Li, R., Wang, Y., and Fan, C., Inorg. Chem. Commun., 2020, 116, 107931

[7] Huang, C., Chen, L., Li, H., Mu, Y., and Yang, Z., RSC Adv., 2019, 9, 27768-27779

[8] al-Abror, M.L., Hastuti, E., and Prasetyo, A., J Environ Chem Eng, 2022, 17, 2, 182 – 189

[9] Shetty, M., Muniyappa, M., Rani, M.N., Gangaraju, V., D. Shivaramu, P.,and Rangappa, D. Photocatalytic Efficiency of Bi-Based Aurivillius Compounds: Critical Review and Discernment of the Factors Involved. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. 2021, Springer, Cham. Berlin

[10] Ren, J., Wang, W., Zhang, L., Chang, J., and Hu, S., Catal. Commun, 2009, 10(14), 1940-1943. 2009.

[11] Li, Y., Chen, G., Zhang, H., Li, Z., and Sun, J., J. Solid State Chem., 2008, 181(10), 2653-2659

[12] Rouf, U. A., Hastuti, E., and Prasetyo, A. Jurnal Kartika Kimia, 2021, 4(1), 51-57.

[13] Gao, J., Shen, J., Maouche, C., Ali, N.R., Yang, J., and Liu, Q., J. Clean. Prod., 2022, 372,133770.

[14] Flores, N.M., Pal, U., Galeazzia R., and Sandova, A., RSC Adv., 2014, 4, 41099

[15] Zhang, L., Wang, W., Zhou, L., and Xu, H. (2007). Small, 2007, 3(9), 1618-1625.

[16] Collu, D.A.; Carucci, C.; Piludu, M.; Parsons, and D.F.; Salis, A. Int. J. Mol. Sci. 2022, 23(10), 5422.

[17] Chen, Z., Jiang, H., Jin, W., and Shi, C., 2016, Appl. Catal. B: Environ., 2016, 180, 698–706

[18] Gupta, S.K., and Mao, Y., Prog. Mater. Sci. 2021, 117, 100734

[19] Januari T., Aini N., Barorroh H., and Prasetyo A., IOP Conf. Ser: Earth Environ. Sci. 2020, 456: 012013.

[20] Zhao, Z., Li, X., Ji, H., and Deng, M., Integr. Ferroelectr., 2014, 154, 54–158.

[21] Prasetyo, A., Guntur, A.N.M., Himmah, S.N., Aini, N., Rouf, U.A., Aziz, A., J. Pure App. Chem. Res., 2022, 11 (3), 207-213

[22] Wu, X., Zhang, F., Wang, X., Wang, H., Chen, Y., Zhu, J and Chen, Q., J. Mater. Sci., 2021, 36, 1058-1066.

[23] Afqir, M., Elaatmani, M., Zegzouti, A., Tahiri, N., and Daoud, M., Appl. Phys. A: Mater. Sci., 2022, 128(832), 1-10.

[24] Leandro, M. K. D. N. S., Moura, J.V.B., Freire, P.D.T.C., Vega, M.L., Lima, C.D.L., Hidalgo, A.A., Araujo, A.C.J.D., Freitas, P.R., Paulo, C.L.R., Sousa, A.K.D., and Rocha, J.E., Antibiotics, 2021. 10(9), 1068.

[25] Yanti, Y. N., and Mitika, S., Jurnal Ilmiah Ibnu Sina, 2017, 2(1), 158-168.

[26] Dima, L.L.R.H., Fatimawali, F., and Lolo, W.A., Pharmacon, 2016, 5(2), 282-289.

[27] Zuniga, J.P., Abdou, M., Gupta, S.K., and Mao, Y., J Vis Exp. 2018, 27(140), 58482.

[28] Kimura, T. Molten salt synthesis of ceramic powders. Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications. 2011, Rijeka: In Tech.

[29] Ma, W., Liu, Q., Lin, Y., and Li, Y. Molecules, 2023, 28(15), 5691.

[30] Seifollah Jalili, S., and Majidi, R, Phys. B: Condens. Matter, 2008, 403, 19–20.

[31] Regmi, C., Joshi, B., Ray, S. K., Gyawali, G., and Pandey, R. P. Front. Chem., 2018, 6, 33.

[32] Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., and Habib, S.S., and Memic, A., Int. J. Nanomedicine, 2012, 7, 6003–6009.

[33] Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., and Adibkia, K., Mater. Sci. Eng. C, 2014, 44, 278–284.

Downloads

Published

2025-04-30

How to Cite

Antibacterial Potential of SrBi2Ta2O9 Synthesized via Molten Salt Method. (2025). The Journal of Pure and Applied Chemistry Research, 14(1), 13-22. https://doi.org/10.21776/