Effect of Different Treatments During Synthesis on Physical and Chemical Properties of Bacterial Cellulose/Chitosan Composite Film
Annisa Nabila Izzaty, Emmy Yuanita, Sudirman Sudirman, Sarkono Sarkono, Muhammad Al Faris, Maria Ulfa
J. Pure App. Chem. Res. Vol 13, No 2 (2024), pp. 90-101
Submitted: February 13, 2024     Accepted: May 24, 2024     Published: August 24, 2024

Abstract


Cover Image

Bacterial cellulose (BC) and chitosan (Chi) are biopolymers that play a vital role in various industrial applications due to their unique properties, such as biodegradability, biocompatibility, flexibility, and excellent physical properties. Combined, these two materials can create composites with exceptional characteristics, which can be tailored for specific applications. This study aimed to evaluate the effect of different ultrasonication and stirring treatments on the synthesis of BC/Chi composites, focusing on their chemical, physical, and mechanical properties. Based on the results of microscopy, SEM-EDS, and FTIR analysis, it was found that ultrasonication treatment provides a more effective dispersion process, resulting in higher physical and mechanical properties than BC/Chi stirring.

Keywords : Bacterial cellulose; chitosan; ultrasonication; stirring; chemical properties; pyhsical properties
Full Text: PDF


References


[1] Strnad, S., Zemljič, L. F. Polymers, 2023.

[2] Ashrafi, A., Jokar, M., Mohammadi Nafchi, A. Int. J. Biol. Macromol., 2018, 108,
444–454.

[3] Li, D., Tian, X., Wang, Z., Guan, Z., Li, X., Qiao, H., Ke, H., Luo, L., Wei, Q. Chemical Engineering Journal, 2020, 383.

[4] Cacicedo, M. L., Pacheco, G., Islan, G. A., Alvarez, V. A., Barud, H. S., Castro, G. R. Int. J. Biol. Macromol., 2020, 147, 1136–1145.

[5] Indriyati, Dara, F., Primadona, I., Srikandace, Y., Karina, M. J. Polym. Res., 2021, 28 (3).

[6] Jabłońska, J., Onyszko, M., Konopacki, M., Augustyniak, A., Rakoczy, R., Mijowska, E., Int. J. Mol. Sci., 2021, 22 (14).

[7] Portela, R., Leal, C. R., Almeida, P. L., Sobral, R. G. Microbial Biotechnology, 2019, pp 586–610.

[8] Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A., Biotechnol. Adv., 2015, 33 (8),
1547–1571.

[9] Khattak, S., Qin, X. T., Huang, L. H., Xie, Y. Y., Jia, S. R., Zhong, C. Int. J. Biol. Macromol., 2021, 189, 483–493.

[10] Pasaribu, K. M., Gea, S., Ilyas, S., Tamrin, T., Radecka, I. Biomolecules, 2020, 10 (11), 1–15.

[11] Chen, X., Cui, J., Xu, X., Sun, B., Zhang, L., Dong, W., Chen, C., Sun, D. Carbohydr. Polym., 2020, 229.

[12] Liu, X., Wang, Y., Cheng, Z., Sheng, J., Yang, R. Carbohydr. Polym., 2019, 214,
311–316.

[13] Zmejkoski, D. Z., Zdravković, N. M., Trišić, D. D., Budimir, M. D., Marković, Z. M., Kozyrovska, N. O., Todorović Marković, B. M. Int. J. Biol. Macromol., 2021, 191,
315–323.

[14] Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Harun, W. S. W. Ultrasonics Sonochemistry. Elsevier B.V. May 1, 2021.

[15] Wardhono, E. Y., Wahyudi, H., Agustina, S., Oudet, F., Pinem, M. P., Clausse, D., Saleh, K., Guénin, E., Nanomaterials, 2018, 8 (10).

[16] Ren, X., Tong, Z., Dai, Y., Ma, G., Lv, Z., Bu, X., Bilal, M., Vakylabad, A. B., Hassanzadeh, A., Separations, 2023, 10 (4).

[17] Yang, Z., Pan, L., Han, J., Li, Z., Wang, J., Li, X., Li, W. J. Eng. (United Kingdom), 2017, 2017.

[18] Ybañez, M. G., Camacho, D. H. RSC Adv 2021, 11 (52), 32873–32883.

[19] Ulfa, M., Noviani, I., Yuanita, E., Dharmayani, N. K. T., Sudirman, Sarkono. Jurnal Penelitian Pendidikan IPA, 2023, 9 (6), 4647–4651.

[20] Ashraf, M. A., Peng, W., Zare, Y., Rhee, K. Y. Nanoscale. Res. Lett., 2018, 13.

[21] Pasaribu, K. M., Ilyas, S., Tamrin, T., Radecka, I., Swingler, S., Gupta, A., Stamboulis, A. G., Gea, S. Int. J. Biol. Macromol. 2023, 230, 123118.

[22] Cattaruzza, M., Fang, Y., Furó, I., Lindbergh, G., Liu, F., Johansson, M., J. Mater. Chem. A Mater., 2023, 11 (13), 7006–7015.

[23] Song, Y., Zhao, G., Zhang, S., Xie, C., Li, X. Polymers (Basel) 2023, 15 (18).

[24] Burkhardt, J. Adv. Mech. Eng., 2019, 11 (7).

[25] Francis, C. F. J., Kyratzis, I. L., Best, A. S. Adv. Mater., Wiley-VCH Verlag May 1, 2020.

[26] Jang, J., Oh, J., Jeong, H., Kang, W., Jo, C. Materials. MDPI AG October 2, 2020, pp 1–37.

[27] Gonzaga, V. de A. M., Poli, A. L., Gabriel, J. S., Tezuka, D. Y., Valdes, T. A., Leitão, A., Rodero, C. F., Bauab, T. M., Chorilli, M., Schmitt, C. C. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108 (4), 1388–1397.

[28] Li, C. P., Weng, M. C., Huang, S. L. Polymers (Basel) 2020, 12 (6), 1326.

[29] Preobrazhenskiy, I. I., Putlyaev, V. I. Mendeleev Communications 2023, 33 (1), 83–85.

[30] Tanks, J. D., Arao, Y., Kubouchi, M. Compos. Struct., 2018, 202, 686–694.

[31] Yakaew, P., Phetchara, T., Kampeerapappun, P., Srikulkit, K. Polymers (Basel) 2022, 14 (21).

[32] Emeka Arikibe, J., Lata, R., Rohindra, D. J. Appl. Biosci., 2021, 162, 16675–16693.

[33] Stanescu, P. O., Radu, I. C., Leu Alexa, R., Hudita, A., Tanasa, E., Ghitman, J., Stoian, O., Tsatsakis, A., Ginghina, O., Zaharia, C., Shtilman, M., Mezhuev, Y., Galateanu, B. Drug. Deliv., 2021, 28 (1), 1932–1950.

[34] Beliu, H. N., Pell, Y. M., Jasron, J. Ut. LONTAR Jurnal Teknik Mesin Undana 2016,
3 (2).


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.