Immobilization of Cutinase from Fussarium oxysporum into Sea Sand Matrix for Catalytic Degradation of Polyethylene Terephthalate (PET)
Tira P. K. Prameswari, Sutrisno Sutrisno, Anna Roosdiana
J. Pure App. Chem. Res. Vol 13, No 1 (2024), pp. 11-26
Submitted: September 08, 2023     Accepted: January 25, 2024     Published: May 06, 2024

Abstract


Cover Image

Cutinase is an enzyme that can be used as a catalyst in the hydrolysis reaction of polyethylene terephthalate (PET) waste into terephthalic acid and ethylene glycol. Generally, cutinase has low stability in its free form. Therefore, to increase cutinase stability, cutinase needs to be immobilized. In this study, cutinase was immobilized into a sea sand matrix by adsorption technique. The purpose of this study was to determine the optimum conditions of PET hydrolysis (pH, temperature, and incubation time), and to study the ability of immobilized cutinase for catalytic degradation of PET. The results show that immobilized cutinase has optimum conditions at pH 8, temperature of 50 °C, and incubation time of 24 hrs. Moreover, the immobilized cutinase can be used for up to three cycles with a residual activity percentage of 66.2% and an activity value of 23.224 nmol. g-1. min-1. The total enzyme activity of immobilized cutinase after being used in three cycles was 89.99 nmol. g-1. min-1 or 28.6% of its free enzyme activity.


Keywords : cutinase, immobilization, plastic, polyethylene terephthalate, sea sand.
Full Text: PDF


References


[1] Rhodes, C. J. Sci. Prog. 2018, 101 (3), 207–260.

[2] Alhazmi, H., Almansour, F. H., Aldhafeeri, Z. Sustainability 2021, 13 (10), 5340.

[3] Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R., Cole, M., Hooper, T., Lindeque, P. K., Pascoe, C., Wyles, K. J. Mar. Pollut. Bull. 2019, 142, 189–195.

[4] Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., Law, K. L. Science 2015, 347 (6223), 768–771.

[5] Dimarogona, M., Nikolaivits, E., Kanelli, M., Christakopoulos, P., Sandgren, M., Topakas, E. Biochim. Biophys. Acta BBA - Gen. Subj. 2015, 1850 (11), 2308–2317.

[6] Maurya, A., Bhattacharya, A., Khare, S. K. Front. Bioeng. Biotechnol. 2020, 8, 602325.

[7] Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., Wahab, R. A. Biotechnol. Biotechnol. Equip. 2015, 29 (2), 205–220.

[8] Datta, S., Christena, L. R., Rajaram, Y. R. S. 3 Biotech 2013, 3 (1), 1–9.

[9] Nikolaivits, E., Makris, G., Topakas, E. J. Agric. Food Chem. 2017, 65 (17), 3505–3511.

[10] Sui, L., Wang, J., Yang, X., Wang, Z. Sustainability 2020, 12 (8), 3242.

[11] Sutrisno, S., Roosdiana, A., Suratmo, S. J. Pure Appl. Chem. Res. 2018, 7 (2), 180–189.

[12] Homaei, A. A., Sariri, R., Vianello, F., Stevanato, R. J. Chem. Biol. 2013, 6 (4), 185–205.

[13] Pirillo, V., Pollegioni, L., Molla, G. FEBS J. 2021, 288 (16), 4730–4745.

[14] Chaudhari, S. A., Singhal, R. S. Int. J. Biol. Macromol. 2015, 79, 398–404.

[15] Sooksai, T., Bankeeree, W., Sangwatanaroj, U., Lotrakul, P., Punnapayak, H., Prasongsuk, S. 3 Biotech 2019, 9 (11), 389.

[16] Manrich, A., Moreira, F. K. V., Otoni, C. G., Lorevice, M. V., Martins, M. A., Mattoso, L. H. C. Carbohydr. Polym. 2017, 164, 83–91.

[17] Kögel-Knabner, I., Amelung, W. In Treatise on Geochemistry, Elsevier, 2014, pp 157–215.

[18] Chinchillas-Chinchillas, M. J., Orozco-Carmona, V. M., Alvarado-Beltrán, C. G., Almaral-Sánchez, J. L., Sepulveda-Guzman, S., Jasso-Ramos, L. E., Castro-Beltrán, A. J. Polym. Environ. 2019, 27 (3), 659–669.

[19] Furukawa, M., Kawakami, N., Tomizawa, A., Miyamoto, K. Sci. Rep. 2019, 9 (1), 16038.

[20] Martínez, A., Maicas, S. Catalysts 2021, 11 (10), 1194.

[21] Ronkvist, Å. M., Xie, W., Lu, W., Gross, R. A. Macromolecules 2009, 42 (14), 5128–5138.

[22] Portier, J., Poizot, P., Campet, G., Subramanian, M. A., Tarascon, J.-M. Solid State Sci. 2003, 5 (5), 695–699.

[23] Sahai, N. Environ. Sci. Technol. 2002, 36 (3), 445–452.

[24] Robinson, P. K. Essays Biochem. 2015, 59, 1–41.

[25] Chen, S., Tong, X., Woodard, R. W., Du, G., Wu, J., Chen, J. J. Biol. Chem. 2008, 283 (38), 25854–25862.

[26] Sang, T., Wallis, C. J., Hill, G., Britovsek, G. J. P. Eur. Polym. J. 2020, 136, 109873.

[27] Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., Suh, S. ACS Sustain. Chem. Eng. 2020, 8 (9), 3494–3511.

[28] Jesionowski, T., Zdarta, J., Krajewska, B. Adsorption 2014, 20 (5–6), 801–821.

[29] Bié, J., Sepodes, B., Fernandes, P. C. B., Ribeiro, M. H. L. Processes 2022, 10 (3), 494.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.