A Coupling Agent's Inclusion Affects Functional Groups and Heat Resistance in Energy Storage Materials
Nur Aini Fauziyah, Dyah Suci Perwitasari, Primasari Cahya Wardhani, Dira Ernawati, Nabilla Nabilla
J. Pure App. Chem. Res. Vol 12, No 3 (2023), pp. 181-188
Submitted: August 29, 2023     Accepted: December 07, 2023     Published: December 28, 2023


Cover Image

The study of functional groups and heat resistance of energy-importing materials, as well as the inclusion of coupling agents, were the primary subjects of this article. 3-(trimethoxysilyl) propyl methacrylate was the coupling agent employed in this study to alter the surface of the silica in the composite material being created. Furthermore, the emergence of bifunctional organometallic (silane) connecting groups allowed the coupling agent to improve the energy storage material's heat resistance. Through the using of dynamic mechanical analysis, scanning electronic microscopy, and thermal tests. It was determined how the type of coupling material affected the interfacial bond strength. According to the findings, there was a significant interaction between the coupling material and the filler surface that had an impact on the material's heat resistance.

Keywords : coupling materials; functional groups; heat resistance.
Full Text: PDF


[1] Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., Sharma, S. Nat. Rev. Earth Environ., 2020, 1 (8), 388–403.

[2] Fawzy, S., Osman, A. I., Doran, J., Rooney, D. W. Environ. Chem. Lett., 2020, 18, 2069–2094.

[3] Fauziyah, N. A., Hilmi, A. R., Zainuri, M., Asrori, M. Z., Mashuri, M., Jawaid, M., Pratapa, S. J. App. Polym. Sci., 2019, 136 (42), 48130.

[4] Magendran, S. S., Khan, F. S. A., Mubarak, N. M., Vaka, M., Walvekar, R., Khalid, M., Abdullah, E. C., Nizamuddin, S., Karri, R. R. Nano-Struct. Nano-Objects, 2019, 20, 100399.

[5] Duquesne, M., Mailhé, C., Doppiu, S., Dauvergne, J.-L., Santos-Moreno, S., Godin, A., Fleury, G., Rouault, F., Palomo del Barrio, E. Materials, 2021, 14 (16), 4707.

[6] Nugraha, J., Sugiyana, D., Wahyudi, T. Arena Tekstil, 2020, 35 (2), 107–112.

[7] Wang, X., Li, W., Luo, Z., Wang, K., Shah, S. P. Energy Build., 2022, 260, 111923.

[8] Shah, K. W., Ong, P. J., Chua, M. H., Toh, S. H. G., Lee, J. J. C., Soo, X. Y. D., Png, Z. M., Ji, R., Xu, J., Zhu, Q. Energy Build., 2022, 262, 112018.

[9] Kabeel, A. E., Sathyamurthy, R., Manokar, A. M., Sharshir, S. W., Essa, F. A., Elshiekh, A. H. J. Energy Storage, 2020, 28, 101204.

[10] Ayyasamy, L. R., Mohan, A., Rex, L. K., Sivakumar, V. L., Dhanasingh, S. V., Sivasamy, P. Therm. Sci., 2022, 26 (2 Part B), 1615–1621.

[11] Chaichan, M. T., Kazem, H. A. Sol. Energy., 2018, 164, 370–381.

[12] Lu, B., Zhang, Y., Zhang, J., Zhu, J., Zhao, H., Wang, Z. J. Energy Storage, 2022, 46, 103928.

[13] Prieto, C., Cabeza, L. F. Appl. Energy., 2019, 254, 113646.

[14] Kuciński, K., Stachowiak-Dlużyńska, H., Hreczycho, G. Coord. Chem. Rev., 2022, 459, 214456.

[15] Liang, H., Wang, L.-J., Ji, Y.-X., Wang, H., Zhang, B. Angew. Chem. Int. Ed., 2021, 60 (4), 1839–1844.

[16] Yuan, W., Zhu, X., Xu, Y., He, C. Angew. Chem. Int. Ed., 2022, 61 (31), e202204912.

[17] Nagamalla, S., Mague, J. T., Sathyamoorthi, S. Org. Lett. 2022, 24 (3), 939–943.

[18] Kokuryo, S., Miyake, K., Uchida, Y., Mizusawa, A., Kubo, T., Nishiyama, N. Mater., Today Sustain., 2022, 17, 100098.

[19] Bao, J., Yang, Q., Zeng, S., Sang, X., Zhai, W., Nie, H. Microporous Mesoporous Mater., 2022, 337, 111897.

[20] Fauziyah, N. A., Hilmi, A. R., Fadly, T. A., Asrori, M. Z., Mashuri, M., Pratapa, S. J. Appl. Polym. Sci., 2019, 136 (17), 47372.

[21] Mun, S. Y., Ha, J., Lee, S., Ju, Y., Lim, H. M., Lee, D. Compos. Part A: Appl. Sci. Manuf., 2021, 142, 106208.

[22] Fauziyah, N. A., Fadly, T. A., Rosyidi, A., Mashuri, Pratapa, S., J. Phys.: Conf. Ser. 2017, 817, 012020.

[23] Suresha, B., Giraddi, V. V., Anand, A., Somashekar, H. M., Mater. Today: Proc., 2022, 59, 794–799.

[24] Saleem, S., Animasaun, I. L., Yook, S.-J., Al-Mdallal, Q. M., Shah, N. A., Faisal, M. Surf. Interfaces., 2022, 30, 101854.

[25] Vinod, D., Cherstvy, A. G., Wang, W., Metzler, R., Sokolov, I. M. Phys. Rev. E, 2022, 105 (1), L012106.

[26] Fu, S., Ni, P., Wang, B., Chu, B., Zheng, L., Luo, F., Luo, J., Qian, Z., Biomater., 2012, 33 (19), 4801–4809.

[27] Mousa, E., Hafez, Y., Nasr, G. M., J. Electron. Mater., 2021, 50 (5), 2594–2604.

[28] Menard, K. P., Menard, N., Dynamic Mechanical Analysis, CRC Press, 2020.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.