Study Direction to Oxidize a Local Pine Rosin with Potassium Permanganate
Abstract

Pine rosin acid or Gondorukem is a solid resin obtained from pine sap. It is yielded as residue from a high temperature distillation process. In industry, rosin acid is widely used and modified as raw material in paint, ink, adhesive, resin, thermoplastic, and thermosetting polymer. Modification process generally is undergone to generate rosin acid with specific properties and for certain purposes. This paper report, potassium permanganate oxidation reaction of pine rosin acid under acidic process at low temperature. Product identified as 13,14-seco-13-oxoabiet-7-ene-dioic acid (0.52%), 7,8-dihydroxy-abietic acid (6.62%), and 7-oxo-dehydroabietic acid (1.49%). The crude product was isolated as a pale to white solid. Under high temperature a yellowish product was resulted. In overall, the yield isolated in between 46.4% and 86.0%.
References
[1] K. Fiebach and D. Grimm, “Resins, Natural,” in Ullmann’s Encyclopedia of Industrial Chemistry, 2012, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
[2] L. McKeon, Characterisation and Determination of Rosin Compositions Using Analytical Approaches, PhD Thesis, Dublin City University, Dublin City, 2014.
[3] Wiyono, B., Tachibana, S. and Tinambunan, D. Pak. J. Biol. Sci., 2006, 9 (1), 7–14,
[4] Liu, P., Liu, X., Saburi, T., Kubota, S., Huang, P. and Wada, Y., ACS Omega, 2020, 4(45), 29102-29109.
[5] Silvestre, A. J. and Gandini, A. Rosin: Major sources, properties and applications, in Monomer, polymer and composite from renewable resources, Elsevier Ltd. Germany, 2008
[6] Standar Nasional Indonesia, “Standar Nasional Indonesia 7636 : 2011,” Jakarta, 2011.
[7] A. M. Atta, S. M. El-Saeed, and R. K. Farag, React. Funct. Polym., 2006, 66 (12), 1596-1608.
[8] F. Mustata and I. Bicu, Eur. Polym. J., 2010, 46 (6), 1316-1327.
[9] Lewis, J.B. and Hedrick, G.W., Ind. Eng. Chem. Prod. Res. Dev., 1970, 9 (3), 304-310.
[10] Zheng, Y., Yao, K., Lee, J., Chandler, D., Wang, J., Wang, C., Chu, F. and Tang, C., Macromolecules, 2010, 43, (14), 5922
[11] Li, Y., Xu, X., Niu, M., Chen, J., Wen, J., Bian, H., Yu, C., Liang, M., Ma, L., Lai, F. and Liu, X. Energy Fuels, 2019, 33 (11), 11200–11209.
[12] Prinz, S., Mullner, U., Heilmann, J., Winkelmann, K., Sticher, O., Haslinger, E. and Hufner, A. J. Nat. Prod., 2002, 65 (11), 1530–1534.
[13] M. Masruri, R. W. Amini, and M. F. Rahman, Indones. J. Chem., 2018, 16 (1), 59.
[14] Huang, X. and Groves, J. T., JBIC J. Biol. Inorg. Chem., 2014, 22 (2–3), 185-207.
[15] Yang, P. and Yang, W., ACS Appl. Mater. Interfaces, 2014, 6 (6), 3759-3770.
[16] Wiberg, K. B. and Saegebarth, K. A., J. Am. Chem. Soc., 1957, 79 (11), 2822-2824.
[17] T. Silitonga, S. Sumadiwangsa, and S. Nayasapoetra, “Pengolahan dan Pengawasan Kualitas Gondorukem dan Terpentin,” Direkorat Jendral Kehutanan, Bogor, 1973.
[18] Afifah, S. N., Masruri, M., Srihardyastutie, A. and Rahman, M. F., Jurnal Kimia Valensi, 2022, 8 (1), 92-105.
[19] Coates, J., Interpretation of Infrared Spectra, A Practical Approach, in Encyclopedia of Analytical Chemistry, R. A. Meyers, Ed., 2006, John Wiley & Sons Ltd., UK.
[19] Koyama, H., Okawara, H., Kobayashi, S. and Ohno, M., Tetrahedron Lett., 1985, 26 (22), 2685–2688.
[20] Zaidi, S.F.H., Awale, S., Kalauni, S.K., Tezuka, Y., Esumi, H. and Kadota, S., Planta medica, 2006, 72 (13), 1231-1234.
[21] Lekphrom, R., Kanokmedhakul, S. and Kanokmedhakul, K., Planta medica, 2010, 76 (7), 726-728.
[22] Wiberg, K.B., Wang, Y.G., Sklenak, S., Deutsch, C. and Trucks, G., J. Am. Chem. Soc., 2006, 128 (35), 11537-11544.
[23] Varma, R.S. and Naicker, K.P., Tetrahedron Let., 1998, 39 (41), 7463-7466.
[24] Krapcho, A.P., Larson, J.R. and Eldridge, J.M., J. Org. Chem., 1977, 42 (23), 3749-3753.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.