Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites
Ozi Adi Saputra, Dheo Adha Saputra, Kartika Setia Rini, Edi Pramono
J. Pure App. Chem. Res. Vol 5, No 2 (2016), pp. 85-94
Submitted: March 27, 2016     Accepted: June 27, 2016     Published: June 27, 2016


Cover Image

Preparation of sulfonated-kaolin (sKao) has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao). Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell.  Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR) spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao). The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC) which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

Keywords : Cationic Exchange Capacity; Chitosan; Membrane; Proton Exchange Membranes; Sulfonated-Kaolin
Full Text: PDF


Peng, Y., Lu, H., Wang, Z. and Yan, Y., J. Mater. Chem. A., 2014, 2, 16093-16100.

Annadurai, G., Bioprocess Eng., 2000, 23, 451-455.

Kiakhani, M.S., Arami, M. and Gharanjig, K., J. Environ. Chem. Eng., 2013, 1, 406-415.

Mukoma, P., Jooste, B.R. and Volsloo, H.C.M., J. Power Sources., 2004, 136, 16-23.

He, Y., Tong, C., Geng, L., Liu, L. and Lu, C., J. Membrane Sci., 2008, 458, 36-46.

Ahmed, M. and Dincer, I., Int. J. Energ. Resour., 2011, 35, 1213-1228.

Mistri, E.A., Mohanty, A.K., Banerjee, S., Komber, H. And Voit, B., J. Membrane Sci., 2013, 441, 168-177.

Bai, H., Zhang, H., He, Y., Liu, J., Zhang, B. and Wang, J., J. Membrane Sci., 2014, 454, 220-232.

Ozer, O., Ince, A., Karagoz, B. and Bicak, N., Desalination., 2013, 309, 141-147.

Klyasom, C., Ladewig, B.P., Lu, G.Q.M. and Wang, L., J. Membrane Sci., 2011, 368, 48-53.

Cestari, A.R., Vieira, E.F.S., Tavares, A.M.G. and Bruns, R.E., J. Hazard. Mater., 2008, 153, 566-574.

Daraei, P., Madaeni, S.S., Salehi, E., Ghaemi, N., Ghari, H.S., Khadivi, M.A. and Rostami, E., J. Membrane Sci., 2013, 436, 97-108.

Park, S.S., Hwang, E.H., Kim, B.C. and Park, H.C., J. Am. Ceram. Soc., 2000, 83, 1341-1345.

Zhang, B., Li, Y., Pan, X., Jia, X. and Wang, X., J. Phys. Chem. Solid., 2007, 68, 135-142.

Olejnik, S., Posner, A.M. and Quirk, J.P., Clay Miner., 1970, 8, 421-434.

Valášková, M., Rieder, M., Matějka, V. and Čapková, P., Appl. Clay Sci., 2007, 35, 108-118.

Ismail, H., Khoo, W.S. and Ariffin, A., J. Vinyl Addit. Technol. DOI 10.1002/vnl.20331

Mohamed, N.S., Subban, R.H.Y. and Arof, A.K., J. Power Sources., 1995, 56, 153-156.

Wang, F., Hickner, M., Kim, Y.S., Zawodzinski, T.A. and McGranth, J.E., J. Membrane Sci., 2002, 197, 231-242.

Sugahara, Y., Satokawa, S., Yoshioka, K.I., Kuroda, K. and Kato, C., Clay Clay Miner., 1989, 37, 143.

Jimenez, M., Duquesne, S., and Bourbigot, S., Ind. Eng.
Chem. Res.
, 2006, 45, 4500-4508.

Haiyun M., Lifang T., Zhongbin X., and Zhengping F., Appl. Clay Sci., 2008, 42, 238-245.


  • There are currently no refbacks.