Carbon Nanotube Covalently Attached Laccase Biocathode for Biofuel Cell

Authors

  • Rizmahardian Ashari Kurniawan
  • Aulani Aulanni'am Brawijaya University, Indonesia
  • Fa-Kuen Shieh National Central University, Taiwan
  • Peter Po-Jhen Chu National Central University, Taiwan

DOI:

https://doi.org/10.21776/ub.jpacr.2013.002.02.143

Keywords:

Laccase, biofuel cell, biocathode, electron transfer, enzyme immobilization

Abstract

Biocathode for biofuel cell was prepared by covalently immobilizedLaccaseon CNT (CNT-Laccase) using glutaraldehyde as conjugates. Successful laccase immobilization was confirmed by Fourier Transform Infrared (FTIR) Spectrophotometry, Surface Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). Immobilization affected Laccase enzymatic activity where it boosts the stability at high temperature and neutral pH. At temperature 65ºC, free Laccase completely loss its activity, while CNT-Laccase still retaining 57.12% of its activity at 45ºC. The activity of CNT-Laccase at pH 7 was 7.04% of activity at pH 5 which was higher than that of free Laccase. CNT-Laccase was able to perform oxygen electroreduction with addition ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediator. Performance of oxygen electroreduction activity was also determined by type and composition of binding polymer. Nafion was able to provide better environment for oxygen electroreduction activity compare to polyvinyl alcohol (PVA). Current density resulted in using Nafion in ratio 1:10 to buffer volume was 1.31 mA/cm2, which was higher than that of PVA (1.01 mA/cm2). Increasing binding polymer ratio into 1:2 and 1:1 undermined oxygen electroreduction activity.

Downloads

Download data is not yet available.

References

P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Energy Policy, 2008, 36 (12), 4356-4362. [2] K. Sundmacher, Ind. Eng. Chem. Res., 2010, 49 (21), 10159-10182. [3] S.G. Chalk, J.F. Miller, J. Power Sources, 2006, 159 (1), 73-80. [4] W. Gellett, J. Schumacher, M. Kesmez, D. Le, S. Minteer, D. , 2010, 157 (4), B557-B562. [5] C.H. Kjaergaard, J. Rossmeisl, J.K. Nørskov, Inorg. Chem., 2010, 49 (8), 3567-3572. [6] L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, J. Am. Chem. Soc., 2012, 134 (11), 5040-5043. [7] S. Calabrese Barton, J. Gallaway, P. Atanassov, Chem. Rev., 2004, 104 (10), 4867-4886. [8] J.L. Toca-Herrera, J.F. Osma, S.R. Couto, Potential of solid-state fermentation for laccase production, in: A. Mendez-Vilas (Ed.) Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 2007, FORMATEX, Spain. [9] B. Viswanath, M.S. Chandra, H. Pallavi, B.R. Reddy, African J. Biotechnol., 2008, 7 (8), 1129-1133. [10] D.L. Johnson, J.L. Thompson, S.M. Brinkmann, K.A. Schuller, L.L. Martin, Biochemistry, 2003, 42 (34), 10229-10237. [11] K. Piontek, J. Biol. Chem., 2002, 277 (40), 37663-37669. [12] O.V. Morozova, G.P. Shumakovich, M.A. Gorbacheva, S.V. Shleev, A.I. Yaropolov, Biochemistry (Moscow), 2007, 72 (10), 1136-1150. [13] P. Baldrian, FEMS Microbiol. Rev., 2006, 30 (2), 215-242. [14] S. Shleev, A. Jarosz-Wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov, T. Ruzgas, L. Gorton, Bioelectrochemistry, 2005, 67 (1), 115-124. [15] F.J. Enguita, J. Biol. Chem., 2004, 279 (22), 23472-23476. [16] R.P. Ramasamy, H.R. Luckarift, D.M. Ivnitski, P.B. Atanassov, G.R. Johnson, Chem. Commun., 2010, 46 (33), 6045-6047. [17] O.V. Morozova, G.P. Shumakovich, S.V. Shleev, Y.I. Yaropolov, Appl. Biochem. Microbiol., 2007, 43 (5), 523-535. [18] K. Karnicka, K. Miecznikowski, B. Kowalewska, M. Skunik, M. Opallo, J. Rogalski, W. Schuhmann, P.J. Kulesza, Anal. Chem., 2008, 80 (19), 7643-7648. [19] C. Vaz-Dominguez, S. Campuzano, O. Rüdiger, M. Pita, M. Gorbacheva, S. Shleev, V.M. Fernandez, A.L. De Lacey, Biosens. Bioelectron., 2008, 24 (4), 531-537. [20] I. Ivanov, T. Vidaković-Koch, K. Sundmacher, Energies, 2010, 3 (4), 803-846. [21] J.-F. Wu, M.-Q. Xu, G.-C. Zhao, Electrochem. Commun., 2010, 12 (1), 175-177. [22] X. Wang, P. Sjöberg-Eerola, K. Immonen, J. Bobacka, M. Bergelin, J. Power Sources, 2011, 196 (11), 4957-4964. [23] K. Sadowska, K. Stolarczyk, J.F. Biernat, K.P. Roberts, J. Rogalski, R. Bilewicz, Bioelectrochemistry, 2010, 80 (1), 73-80. [24] E. Nazaruk, M. Karaskiewicz, K. Å»elechowska, J.F. Biernat, J. Rogalski, R. Bilewicz, Electrochem. Commun., 2012, 14 (1), 67-70. [25] Y. Wang, Z. Iqbal, S.V. Malhotra, Chem. Phys. Lett., 2005, 402, 96–101. [26] J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B, 2003, 107, 3712-3718. [27] Y.Z. Airong Li, Liang Xu, Wenqing Zhu and Xingjun Tian, African Journal of Biochemistry Research, 2008, 2 (8), 181-183. [28] R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric identification of organic compounds, 7th ed.,2005, John Wiley & Sons, Hoboken, NJ. [29] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon, 2008, 46 (6), 833-840. [30] G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, A. Zettl, Phys. Status Solidi B, 2007, 244 (11), 3960-3963. [31] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, Nano Lett., 2002, 2 (6), 615-619. [32] A. Mahajan, A. Kingon, Ã. Kukovecz, Z. Konya, P.M. Vilarinho, Mater. Lett., 2013, 90, 165-168. [33] F. Xu, J. Biol. Chem., 1997, 272 (2), 924-928. [34] I. Stoilova, Adv. Biosci. Biotechnol., 2010, 01 (03), 208-215.

Downloads

Published

2013-07-08

Issue

Section

Articles

How to Cite

Carbon Nanotube Covalently Attached Laccase Biocathode for Biofuel Cell. (2013). The Journal of Pure and Applied Chemistry Research, 2(2), 79-88. https://doi.org/10.21776/ub.jpacr.2013.002.02.143