Synthesis and Modification of Macroporous Titania using Silver Nanoparticles
Natalita Maulani Nursam, Jeannie Ziang Yie Tan
J. Pure App. Chem. Res. Vol 7, No 3 (2018), pp. 257-265
Submitted: January 08, 2018     Accepted: July 20, 2018     Published: September 10, 2018


Cover Image

A synthesis method for preparing macroporous nitrogen and silver-modified titania via sol-gel route is presented. The addition of nitrogen and silver nanoparticles was carried out simultaneously with a hard templating technique using silica spheres packed into a three dimensional opal structure. The influence of such modifications on the optical and chemical properties of titania was evaluated using photocatalytic degradation under visible light. The macroporous opal templated samples in this work performed better than the commercial titania, Degussa P25. The highest photocatalytic enhancement, showing more than eight times higher activity than the non-modified titania, was achieved by the opal templated sample prepared with 1.0 mol % of silver. Although silver addition and macroporous templating enhanced the visible light activity, the most significant improvement was afforded by the utilization of the silica opal template that gave rise to high surface area (>100 m2 g-1) and promoted the surface charge interaction.

Keywords : inverse opal, macroporous, photocatalysis, silver, titania.
Full Text: PDF


[1] Lee, J. W., J. H. Moon, Nanoscale, 2015, 7 (12), 5164-5168.

[2] Doherty, C. M., R. A. Caruso, B. M. Smarsly, C. J. Drummond, Chem. Mater., 2009, 21 (13), 2895-2903.

[3] Fenzl, C., S. Wilhelm, T. Hirsch, O. S. Wolfbeis, ACS Appl. Mater. Interfaces, 2013, 5 (1), 173-178.

[4] Rinne, S. A., F. Garcia-Santamaria, P. V. Braun, Nat. Photonics, 2008, 2 (1), 52-56.

[5] Chen, H. A., S. Chen, X. Quan, Y. B. Zhang, Environ. Sci. Technol., 2010, 44 (1), 451-455.

[6] Chen, J. I. L., G. A. Ozin, J. Mater. Chem., 2009, 19 (18), 2675.

[7] Chen, J. I. L., G. von Freymann, S. Y. Choi, V. Kitaev, G. A. Ozin, Adv. Mater., 2006, 18 (14), 1915-1919.

[8] Chen, J. I. L., G. von Freymann, V. Kitaev, G. A. Ozin, J. Am. Chem. Soc., 2007, 129 (5), 1196-1202.

[9] Park, M. S., S. K. Kwon, B. I. Min, Phys. Rev. B, 2002, 65 (16), 1-5.

[10] In, S., A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, R. M. Lambert, J. Am. Chem. Soc., 2007, 129 (45), 13790-13791.

[11] Kim, K., P. Thiyagarajan, H. J. Ahn, S. I. Kim, J. H. Jang, Nanoscale, 2013, 5 (14), 6254-6260.

[12] Liu, J., G. L. Liu, M. Z. Li, W. Z. Shen, Z. Y. Liu, J. X. Wang, J. C. Zhao, L. Jiang, Y. L. Song, Energy Environ. Sci., 2010, 3 (10), 1503-1506.

[13] Schneider, J., M. Matsuoka, M. Takeuchi, J. L. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev., 2014, 114 (19), 9919-9986.

[14] Dinh, C. T., H. Yen, F. Kleitz, T. O. Do, Angew. Chem. Int. Ed., 2014, 53 (26), 6618-6623.

[15] Wang, T., X. Q. Yan, S. S. Zhao, B. Lin, C. Xue, G. D. Yang, S. J. Ding, B. L. Yang, C. S. Ma, G. Yang, G. R. Yang, J. Mater. Chem. A, 2014, 2 (37), 15611-15619.

[16] Stober, W., A. Fink, E. Bohn, J. Colloid Interface Sci., 1968, 26 (1), 62-69.

[17] Holland, B. T., C. F. Blanford, A. Stein, Science, 1998, 281 (5376), 538-540.

[18] Jiang, P., J. Cizeron, J. F. Bertone, V. L. Colvin, J. Am. Chem. Soc., 1999, 121 (34), 7957-7958.

[19] Johnson, S. A., P. J. Ollivier, T. E. Mallouk, Science, 1999, 283 (5404), 963-965.

[20] Bumajdad, A., M. Madkour, Phys. Chem. Chem. Phys., 2014, 16 (16), 7146-7158.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.