Preparation and Characterization of Highly Water Soluble Curcumin – Dextrose Cocrystal
Katherine Kho, Denny Nugroho, Asaf Kleopas Sugih
J. Pure App. Chem. Res. Vol 7, No 2 (2018), pp.
Submitted: January 04, 2018     Accepted: March 12, 2018     Published: May 10, 2018


Cover Image

Curcumin is a natural food colorant isolated from rhizomes of turmeric (Curcuma longa). Despite its many favorable properties, curcumin is practically insoluble in water and relatively unstable, thus limiting its application. In this research, a potential method to improve curcumin solubility and stability, i.e. cocrystallisation of curcumin with dextrose was investigated.. The effect of curcumin content in the cocrystals on solubility and yield of the product was studied. The morphology of the cocrystals was observed using SEM. In addition, stability in different pH range was investigated.  Crystal structure and curcumin – dextrose interaction were analyzed using FT-IR spectra and DSC thermograms. The result shows that curcumin – dextrose cocrystal is a potential food colorant that could be applied to water – based food at various pH range. 

Keywords : cocrystallization, curcumin, dextrose, highly-soluble curcumin
Full Text: PDF


1. Menon, V. P.; Sudheer, A. R., Adv Exp Med Biol, 2007, 595, 105-25.

2. Pavan, A. R.; da Silva, G. D. B.; Jornada, D. H.; Chiba, D. E.; Fernandes, G. F. d. S.; Man Chin, C.; dos Santos, J. L., Nutrients, 2016, 8 (11), 628.

3. Kurien, B. T.; Singh, A.; Matsumoto, H.; Scofield, R. H., Assay Drug Dev Technol., 2007, 5 (4), 567-76.

4. Sousdaleff, M.; Baesso, M. L.; Neto, A. M.; Nogueira, A. C.; Marcolino, V. A.; Matioli, G., J. Agric. Food Chem., 2013, 61 (4), 955-965.

5. Tsai, Y. M.; Chang-Liao, W. L.; Chien, C. F.; Lin, L. C.; Tsai, T. H., Int J Nanomedicine 2012, 7, 2957-66.

6. Jäger, R.; Lowery, R. P.; Calvanese, A. V.; Joy, J. M.; Purpura, M.; Wilson, J. M., Nutrition Journal, 2014, 13, 11-11.

7. Sanphui, P.; Goud, N. R.; Khandavilli, U. B. R.; Nangia, A., Cryst. Growth Des., 2011, 11 (9), 4135-4145.

8. Chow, S. F.; Shi, L.; Ng, W. W.; Leung, K. H. Y.; Nagapudi, K.; Sun, C. C.; Chow, A. H. L., Cryst. Growth Des, 2014, 14 (10), 5079-5089.

9. Bhandari, B.; Datta, N.; D'Arcy, B.; B. Rintoul, G., Lebensm.-Wiss. u.-Technol. 1998; Vol. 31, p 138-142.

10. López-Córdoba, A.; Deladino, L.; Agudelo-Mesa, L.; Martino, M., J Food Eng, 2014, 124 (Supplement C), 158-165.

11. R. Sardar, B.; S. Singhal, R., J Food Eng, 2013, 117, 521–529.

12. Kaijanen, L.; Paakkunainen, M.; Pietarinen, S.; Jernström, E.; Reinikainen., S.-P., Int J Electrochem Sci, 2015, 10, 2950-2961.

13. Wang, Y.; Lu, Z.; Lv, F.; Bie, X., Eur Food Res Technol., 2009, 229 (3), 391-396.

14. T.J. Nibbering, E.; Dreyer, J.; Kühn, O.; Bredenbeck, J.; Hamm, P.; Elsaesser, T., Vibrational Dynamics of Hydrogen Bonds, in Analysis and Control of Ultrafast Photoinduced Reactions, 2007, Vol. 87, Springer, Berlin, 619-687.

15. Mukerjee, A.; Viswanatha, J. K., Anticancer Res., 2009, 29 (10), 3867-3875.

16. Hurtta, M.; Pitkanen, I.; Knuutinen, J.,. Carbohydr. Res.. 2004, 339 (13), 2267-73.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.