Study of Antocyanins Activity from Purple Sweet Potato for Reducing Apoptotic Cells Expression of The Cerebellum On Ischemic Stroke Rats
Latifah Tribuana Dewi, Made Oka Adnyana, Chanif Mahdi, Sasangka Prasetyawan, Arie Srihardyastutie, Aulanni’am Aulanni’am
J. Pure App. Chem. Res. Vol 7, No 2 (2018), pp. 94-99
Submitted: July 27, 2017     Accepted: January 17, 2018     Published: May 05, 2018


Cover Image

This study aims to determine anthocyanin antioxidant performance with a dose of 2 cc/day based on the expression of apoptotic cells on ischemic stroke rats cerebellum. Research was conducted using ischemic stroke rats (Rattus norvegicus) that prepared by ligated for 3 h on the Common Carotid Artery (CCA) and External Carotid Artery (ECA) followed by reperfusion that commonly known as MCAO (Middle Cerebral Artery Occlusion). The anthocyanin extract was characterized by LC-MS and its IC50 was measured by DPPH method. The rats were divided into five groups 1) negative control; 2) reperfusion 1 h; 3) reperfusion 72 h; 4) reperfusion 24 h, with anthocyanin therapy; 5) reperfusion 72 h, with anthocyanin therapy. The results of LC-MS showed that anthocyanin from purple sweet potato extracts contained Petunidin-3,5-O-diglucoside (Pt-DG) with an IC50 value of 22.16 μg/mL, categorized as very strong antioxidant. The results showed that apoptotic cells expression of cerebellum decreased significantly (p<0.01) after 72 h reperfusion with anthocyanins therapy until 2.42%. The current work proved that anthocyanin extract effectively suppresses the apoptotic cell’s expression of the cerebellum on stroke ischemic rats.

Keywords : Anthocyanin, Purple Sweet Potato, Ischemic Stroke, MCAO, Apoptotic cells.
Full Text: PDF


[1] Jie, L.; Xiao-ding, L.; Yun, Z.; Zheng-Dong, Z.; Zhi-Ya, Q.; Meng, L.; Shao-hua, Z.; Shuo, L.; Meng, W.; Lu, Q. Food Chem. 2013, 136 (3–4), 1429–1434.

[2] Hwang, Y. P.; Choi, J. H.; Choi, J. M.; Chung, Y. C.; Jeong, H. G. Food Chem. Toxicol. 2011, 49 (9), 2081–2089.

[3] Bhat, A. H.; Dar, K. B.; Anees, S.; Zargar, M. A.; Masood, A.; Sofi, M. A.; Ganie, S. A. Biomed. Pharmacother. 2015, 74, 101–110.

[4] Shin, W. H.; Park, S. J.; Kim, E. J. Life Sci. 2006, 79 (2), 130–137.

[5] Büttner, F.; Cordes, C.; Gerlach, F.; Heimann, A.; Alessandri, B.; Luxemburger, U.; Türeci, Ö.; Hankeln, T.; Kempski, O.; Burmester, T. Brain Res. 2009, 1252, 1–14.

[6] Kakoli, B. Protease in Apoptosis: Pathways, Protocols and Translational Advances, 1st ed.; Kakoli, B., Ed.; Springer International Publishing Switzerland: London, 2015.

[7] Nur Rohma, A.; Mahdi, C.; Aulanni’am, A. J. Pure Appl. Chem. Res. 2017, 6 (2), 160–165.

[8] Kurniawati, M.; Mahdi, C.; Aulanni’am, A. J. Pure Appl. Chem. Res. 2014, 3 (1), 1–6.

[9] Lailiyah, I.; Prasetyawan, S.; Aulanni’am, A. J. Pure Appl. Chem. Res. 2017, 6 (2), 96–100.

[10] Ahmad, A.; Moshahid Khan, M.; Javed, H.; Raza, S. S.; Ishrat, T.; Badruzzaman Khan, M.; Safhi, M. M.; Islam, F. Mol. Cell. Biochem. 2012, 367 (1–2), 215–225.

[11] Palencia, G.; Medrano, J. Á. N.; Ortiz-Plata, A.; Farfán, D. J.; Sotelo, J.; Sánchez, A.; Trejo-Solís, C. J. Neurol. Sci. 2015, 351 (1–2), 78–87.

[12] Thal, S. E.; Zhu, C.; Thal, S. C.; Blomgren, K.; Plesnila, N. Neurosci. Lett. 2011, 499 (1), 1–3.

[13] Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. J Agric Food Chem. 2009, 57 (5), 1768–1774.

[14] In situ Apoptosis Detection Kit (ab206386) References (accessed Jul 24, 2017).

[15] Jun, M. H.; Yu, J.; Fong, X.; Wan, C. .; Yang, C. T.; Ho. J. Food Sci. Inst. Technol. 2003, 68, 211–212.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.